Evaluate
\frac{24811}{14}\approx 1772.214285714
Factor
\frac{43 \cdot 577}{2 \cdot 7} = 1772\frac{3}{14} = 1772.2142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)24811}\\\end{array}
Use the 1^{st} digit 2 from dividend 24811
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)24811}\\\end{array}
Since 2 is less than 14, use the next digit 4 from dividend 24811 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)24811}\\\end{array}
Use the 2^{nd} digit 4 from dividend 24811
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}10\\\end{array}
Find closest multiple of 14 to 24. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 24 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{14)}01\phantom{5}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}108\\\end{array}
Use the 3^{rd} digit 8 from dividend 24811
\begin{array}{l}\phantom{14)}017\phantom{6}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}108\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)9}10\\\end{array}
Find closest multiple of 14 to 108. We see that 7 \times 14 = 98 is the nearest. Now subtract 98 from 108 to get reminder 10. Add 7 to quotient.
\begin{array}{l}\phantom{14)}017\phantom{7}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}108\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)9}101\\\end{array}
Use the 4^{th} digit 1 from dividend 24811
\begin{array}{l}\phantom{14)}0177\phantom{8}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}108\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)9}101\\\phantom{14)}\underline{\phantom{99}98\phantom{9}}\\\phantom{14)999}3\\\end{array}
Find closest multiple of 14 to 101. We see that 7 \times 14 = 98 is the nearest. Now subtract 98 from 101 to get reminder 3. Add 7 to quotient.
\begin{array}{l}\phantom{14)}0177\phantom{9}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}108\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)9}101\\\phantom{14)}\underline{\phantom{99}98\phantom{9}}\\\phantom{14)999}31\\\end{array}
Use the 5^{th} digit 1 from dividend 24811
\begin{array}{l}\phantom{14)}01772\phantom{10}\\14\overline{)24811}\\\phantom{14)}\underline{\phantom{}14\phantom{999}}\\\phantom{14)}108\\\phantom{14)}\underline{\phantom{9}98\phantom{99}}\\\phantom{14)9}101\\\phantom{14)}\underline{\phantom{99}98\phantom{9}}\\\phantom{14)999}31\\\phantom{14)}\underline{\phantom{999}28\phantom{}}\\\phantom{14)9999}3\\\end{array}
Find closest multiple of 14 to 31. We see that 2 \times 14 = 28 is the nearest. Now subtract 28 from 31 to get reminder 3. Add 2 to quotient.
\text{Quotient: }1772 \text{Reminder: }3
Since 3 is less than 14, stop the division. The reminder is 3. The topmost line 01772 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1772.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}