Evaluate
\frac{62}{9}\approx 6.888888889
Factor
\frac{2 \cdot 31}{3 ^ {2}} = 6\frac{8}{9} = 6.888888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)248}\\\end{array}
Use the 1^{st} digit 2 from dividend 248
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)248}\\\end{array}
Since 2 is less than 36, use the next digit 4 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)248}\\\end{array}
Use the 2^{nd} digit 4 from dividend 248
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)248}\\\end{array}
Since 24 is less than 36, use the next digit 8 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)248}\\\end{array}
Use the 3^{rd} digit 8 from dividend 248
\begin{array}{l}\phantom{36)}006\phantom{6}\\36\overline{)248}\\\phantom{36)}\underline{\phantom{}216\phantom{}}\\\phantom{36)9}32\\\end{array}
Find closest multiple of 36 to 248. We see that 6 \times 36 = 216 is the nearest. Now subtract 216 from 248 to get reminder 32. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }32
Since 32 is less than 36, stop the division. The reminder is 32. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}