Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)248}\\\end{array}
Use the 1^{st} digit 2 from dividend 248
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)248}\\\end{array}
Since 2 is less than 31, use the next digit 4 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)248}\\\end{array}
Use the 2^{nd} digit 4 from dividend 248
\begin{array}{l}\phantom{31)}00\phantom{4}\\31\overline{)248}\\\end{array}
Since 24 is less than 31, use the next digit 8 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{31)}00\phantom{5}\\31\overline{)248}\\\end{array}
Use the 3^{rd} digit 8 from dividend 248
\begin{array}{l}\phantom{31)}008\phantom{6}\\31\overline{)248}\\\phantom{31)}\underline{\phantom{}248\phantom{}}\\\phantom{31)999}0\\\end{array}
Find closest multiple of 31 to 248. We see that 8 \times 31 = 248 is the nearest. Now subtract 248 from 248 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 31, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}