Solve for x
x=\frac{\sqrt{39617}-7}{9892}\approx 0.019413688
x=\frac{-\sqrt{39617}-7}{9892}\approx -0.020828973
Graph
Share
Copied to clipboard
9892x^{2}+14x-1\times 4=0
Multiply 2473 and 4 to get 9892.
9892x^{2}+14x-4=0
Multiply 1 and 4 to get 4.
x=\frac{-14±\sqrt{14^{2}-4\times 9892\left(-4\right)}}{2\times 9892}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9892 for a, 14 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 9892\left(-4\right)}}{2\times 9892}
Square 14.
x=\frac{-14±\sqrt{196-39568\left(-4\right)}}{2\times 9892}
Multiply -4 times 9892.
x=\frac{-14±\sqrt{196+158272}}{2\times 9892}
Multiply -39568 times -4.
x=\frac{-14±\sqrt{158468}}{2\times 9892}
Add 196 to 158272.
x=\frac{-14±2\sqrt{39617}}{2\times 9892}
Take the square root of 158468.
x=\frac{-14±2\sqrt{39617}}{19784}
Multiply 2 times 9892.
x=\frac{2\sqrt{39617}-14}{19784}
Now solve the equation x=\frac{-14±2\sqrt{39617}}{19784} when ± is plus. Add -14 to 2\sqrt{39617}.
x=\frac{\sqrt{39617}-7}{9892}
Divide -14+2\sqrt{39617} by 19784.
x=\frac{-2\sqrt{39617}-14}{19784}
Now solve the equation x=\frac{-14±2\sqrt{39617}}{19784} when ± is minus. Subtract 2\sqrt{39617} from -14.
x=\frac{-\sqrt{39617}-7}{9892}
Divide -14-2\sqrt{39617} by 19784.
x=\frac{\sqrt{39617}-7}{9892} x=\frac{-\sqrt{39617}-7}{9892}
The equation is now solved.
9892x^{2}+14x-1\times 4=0
Multiply 2473 and 4 to get 9892.
9892x^{2}+14x-4=0
Multiply 1 and 4 to get 4.
9892x^{2}+14x=4
Add 4 to both sides. Anything plus zero gives itself.
\frac{9892x^{2}+14x}{9892}=\frac{4}{9892}
Divide both sides by 9892.
x^{2}+\frac{14}{9892}x=\frac{4}{9892}
Dividing by 9892 undoes the multiplication by 9892.
x^{2}+\frac{7}{4946}x=\frac{4}{9892}
Reduce the fraction \frac{14}{9892} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{7}{4946}x=\frac{1}{2473}
Reduce the fraction \frac{4}{9892} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{4946}x+\left(\frac{7}{9892}\right)^{2}=\frac{1}{2473}+\left(\frac{7}{9892}\right)^{2}
Divide \frac{7}{4946}, the coefficient of the x term, by 2 to get \frac{7}{9892}. Then add the square of \frac{7}{9892} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4946}x+\frac{49}{97851664}=\frac{1}{2473}+\frac{49}{97851664}
Square \frac{7}{9892} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4946}x+\frac{49}{97851664}=\frac{39617}{97851664}
Add \frac{1}{2473} to \frac{49}{97851664} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{9892}\right)^{2}=\frac{39617}{97851664}
Factor x^{2}+\frac{7}{4946}x+\frac{49}{97851664}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{9892}\right)^{2}}=\sqrt{\frac{39617}{97851664}}
Take the square root of both sides of the equation.
x+\frac{7}{9892}=\frac{\sqrt{39617}}{9892} x+\frac{7}{9892}=-\frac{\sqrt{39617}}{9892}
Simplify.
x=\frac{\sqrt{39617}-7}{9892} x=\frac{-\sqrt{39617}-7}{9892}
Subtract \frac{7}{9892} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}