Evaluate
\frac{245389}{32}=7668.40625
Factor
\frac{245389}{2 ^ {5}} = 7668\frac{13}{32} = 7668.40625
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)245389}\\\end{array}
Use the 1^{st} digit 2 from dividend 245389
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)245389}\\\end{array}
Since 2 is less than 32, use the next digit 4 from dividend 245389 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)245389}\\\end{array}
Use the 2^{nd} digit 4 from dividend 245389
\begin{array}{l}\phantom{32)}00\phantom{4}\\32\overline{)245389}\\\end{array}
Since 24 is less than 32, use the next digit 5 from dividend 245389 and add 0 to the quotient
\begin{array}{l}\phantom{32)}00\phantom{5}\\32\overline{)245389}\\\end{array}
Use the 3^{rd} digit 5 from dividend 245389
\begin{array}{l}\phantom{32)}007\phantom{6}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}21\\\end{array}
Find closest multiple of 32 to 245. We see that 7 \times 32 = 224 is the nearest. Now subtract 224 from 245 to get reminder 21. Add 7 to quotient.
\begin{array}{l}\phantom{32)}007\phantom{7}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}213\\\end{array}
Use the 4^{th} digit 3 from dividend 245389
\begin{array}{l}\phantom{32)}0076\phantom{8}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}213\\\phantom{32)}\underline{\phantom{9}192\phantom{99}}\\\phantom{32)99}21\\\end{array}
Find closest multiple of 32 to 213. We see that 6 \times 32 = 192 is the nearest. Now subtract 192 from 213 to get reminder 21. Add 6 to quotient.
\begin{array}{l}\phantom{32)}0076\phantom{9}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}213\\\phantom{32)}\underline{\phantom{9}192\phantom{99}}\\\phantom{32)99}218\\\end{array}
Use the 5^{th} digit 8 from dividend 245389
\begin{array}{l}\phantom{32)}00766\phantom{10}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}213\\\phantom{32)}\underline{\phantom{9}192\phantom{99}}\\\phantom{32)99}218\\\phantom{32)}\underline{\phantom{99}192\phantom{9}}\\\phantom{32)999}26\\\end{array}
Find closest multiple of 32 to 218. We see that 6 \times 32 = 192 is the nearest. Now subtract 192 from 218 to get reminder 26. Add 6 to quotient.
\begin{array}{l}\phantom{32)}00766\phantom{11}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}213\\\phantom{32)}\underline{\phantom{9}192\phantom{99}}\\\phantom{32)99}218\\\phantom{32)}\underline{\phantom{99}192\phantom{9}}\\\phantom{32)999}269\\\end{array}
Use the 6^{th} digit 9 from dividend 245389
\begin{array}{l}\phantom{32)}007668\phantom{12}\\32\overline{)245389}\\\phantom{32)}\underline{\phantom{}224\phantom{999}}\\\phantom{32)9}213\\\phantom{32)}\underline{\phantom{9}192\phantom{99}}\\\phantom{32)99}218\\\phantom{32)}\underline{\phantom{99}192\phantom{9}}\\\phantom{32)999}269\\\phantom{32)}\underline{\phantom{999}256\phantom{}}\\\phantom{32)9999}13\\\end{array}
Find closest multiple of 32 to 269. We see that 8 \times 32 = 256 is the nearest. Now subtract 256 from 269 to get reminder 13. Add 8 to quotient.
\text{Quotient: }7668 \text{Reminder: }13
Since 13 is less than 32, stop the division. The reminder is 13. The topmost line 007668 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7668.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}