Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

v^{2}+28v=2450
Swap sides so that all variable terms are on the left hand side.
v^{2}+28v-2450=0
Subtract 2450 from both sides.
v=\frac{-28±\sqrt{28^{2}-4\left(-2450\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 28 for b, and -2450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-28±\sqrt{784-4\left(-2450\right)}}{2}
Square 28.
v=\frac{-28±\sqrt{784+9800}}{2}
Multiply -4 times -2450.
v=\frac{-28±\sqrt{10584}}{2}
Add 784 to 9800.
v=\frac{-28±42\sqrt{6}}{2}
Take the square root of 10584.
v=\frac{42\sqrt{6}-28}{2}
Now solve the equation v=\frac{-28±42\sqrt{6}}{2} when ± is plus. Add -28 to 42\sqrt{6}.
v=21\sqrt{6}-14
Divide -28+42\sqrt{6} by 2.
v=\frac{-42\sqrt{6}-28}{2}
Now solve the equation v=\frac{-28±42\sqrt{6}}{2} when ± is minus. Subtract 42\sqrt{6} from -28.
v=-21\sqrt{6}-14
Divide -28-42\sqrt{6} by 2.
v=21\sqrt{6}-14 v=-21\sqrt{6}-14
The equation is now solved.
v^{2}+28v=2450
Swap sides so that all variable terms are on the left hand side.
v^{2}+28v+14^{2}=2450+14^{2}
Divide 28, the coefficient of the x term, by 2 to get 14. Then add the square of 14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}+28v+196=2450+196
Square 14.
v^{2}+28v+196=2646
Add 2450 to 196.
\left(v+14\right)^{2}=2646
Factor v^{2}+28v+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+14\right)^{2}}=\sqrt{2646}
Take the square root of both sides of the equation.
v+14=21\sqrt{6} v+14=-21\sqrt{6}
Simplify.
v=21\sqrt{6}-14 v=-21\sqrt{6}-14
Subtract 14 from both sides of the equation.