Solve for t
t=\frac{\sqrt{1973045}}{490}+\frac{281}{98}\approx 5.733982045
t=-\frac{\sqrt{1973045}}{490}+\frac{281}{98}\approx 0.000711832
Share
Copied to clipboard
245t^{2}-1405t+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-1405\right)±\sqrt{\left(-1405\right)^{2}-4\times 245}}{2\times 245}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 245 for a, -1405 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-1405\right)±\sqrt{1974025-4\times 245}}{2\times 245}
Square -1405.
t=\frac{-\left(-1405\right)±\sqrt{1974025-980}}{2\times 245}
Multiply -4 times 245.
t=\frac{-\left(-1405\right)±\sqrt{1973045}}{2\times 245}
Add 1974025 to -980.
t=\frac{1405±\sqrt{1973045}}{2\times 245}
The opposite of -1405 is 1405.
t=\frac{1405±\sqrt{1973045}}{490}
Multiply 2 times 245.
t=\frac{\sqrt{1973045}+1405}{490}
Now solve the equation t=\frac{1405±\sqrt{1973045}}{490} when ± is plus. Add 1405 to \sqrt{1973045}.
t=\frac{\sqrt{1973045}}{490}+\frac{281}{98}
Divide 1405+\sqrt{1973045} by 490.
t=\frac{1405-\sqrt{1973045}}{490}
Now solve the equation t=\frac{1405±\sqrt{1973045}}{490} when ± is minus. Subtract \sqrt{1973045} from 1405.
t=-\frac{\sqrt{1973045}}{490}+\frac{281}{98}
Divide 1405-\sqrt{1973045} by 490.
t=\frac{\sqrt{1973045}}{490}+\frac{281}{98} t=-\frac{\sqrt{1973045}}{490}+\frac{281}{98}
The equation is now solved.
245t^{2}-1405t+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
245t^{2}-1405t+1-1=-1
Subtract 1 from both sides of the equation.
245t^{2}-1405t=-1
Subtracting 1 from itself leaves 0.
\frac{245t^{2}-1405t}{245}=-\frac{1}{245}
Divide both sides by 245.
t^{2}+\left(-\frac{1405}{245}\right)t=-\frac{1}{245}
Dividing by 245 undoes the multiplication by 245.
t^{2}-\frac{281}{49}t=-\frac{1}{245}
Reduce the fraction \frac{-1405}{245} to lowest terms by extracting and canceling out 5.
t^{2}-\frac{281}{49}t+\left(-\frac{281}{98}\right)^{2}=-\frac{1}{245}+\left(-\frac{281}{98}\right)^{2}
Divide -\frac{281}{49}, the coefficient of the x term, by 2 to get -\frac{281}{98}. Then add the square of -\frac{281}{98} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{281}{49}t+\frac{78961}{9604}=-\frac{1}{245}+\frac{78961}{9604}
Square -\frac{281}{98} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{281}{49}t+\frac{78961}{9604}=\frac{394609}{48020}
Add -\frac{1}{245} to \frac{78961}{9604} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{281}{98}\right)^{2}=\frac{394609}{48020}
Factor t^{2}-\frac{281}{49}t+\frac{78961}{9604}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{281}{98}\right)^{2}}=\sqrt{\frac{394609}{48020}}
Take the square root of both sides of the equation.
t-\frac{281}{98}=\frac{\sqrt{1973045}}{490} t-\frac{281}{98}=-\frac{\sqrt{1973045}}{490}
Simplify.
t=\frac{\sqrt{1973045}}{490}+\frac{281}{98} t=-\frac{\sqrt{1973045}}{490}+\frac{281}{98}
Add \frac{281}{98} to both sides of the equation.
x ^ 2 -\frac{281}{49}x +\frac{1}{245} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 245
r + s = \frac{281}{49} rs = \frac{1}{245}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{281}{98} - u s = \frac{281}{98} + u
Two numbers r and s sum up to \frac{281}{49} exactly when the average of the two numbers is \frac{1}{2}*\frac{281}{49} = \frac{281}{98}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{281}{98} - u) (\frac{281}{98} + u) = \frac{1}{245}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{245}
\frac{78961}{9604} - u^2 = \frac{1}{245}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{245}-\frac{78961}{9604} = -\frac{394609}{48020}
Simplify the expression by subtracting \frac{78961}{9604} on both sides
u^2 = \frac{394609}{48020} u = \pm\sqrt{\frac{394609}{48020}} = \pm \frac{\sqrt{394609}}{\sqrt{48020}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{281}{98} - \frac{\sqrt{394609}}{\sqrt{48020}} = 0.001 s = \frac{281}{98} + \frac{\sqrt{394609}}{\sqrt{48020}} = 5.734
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}