Evaluate
\frac{245}{184}\approx 1.331521739
Factor
\frac{5 \cdot 7 ^ {2}}{2 ^ {3} \cdot 23} = 1\frac{61}{184} = 1.3315217391304348
Share
Copied to clipboard
\begin{array}{l}\phantom{184)}\phantom{1}\\184\overline{)245}\\\end{array}
Use the 1^{st} digit 2 from dividend 245
\begin{array}{l}\phantom{184)}0\phantom{2}\\184\overline{)245}\\\end{array}
Since 2 is less than 184, use the next digit 4 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{184)}0\phantom{3}\\184\overline{)245}\\\end{array}
Use the 2^{nd} digit 4 from dividend 245
\begin{array}{l}\phantom{184)}00\phantom{4}\\184\overline{)245}\\\end{array}
Since 24 is less than 184, use the next digit 5 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{184)}00\phantom{5}\\184\overline{)245}\\\end{array}
Use the 3^{rd} digit 5 from dividend 245
\begin{array}{l}\phantom{184)}001\phantom{6}\\184\overline{)245}\\\phantom{184)}\underline{\phantom{}184\phantom{}}\\\phantom{184)9}61\\\end{array}
Find closest multiple of 184 to 245. We see that 1 \times 184 = 184 is the nearest. Now subtract 184 from 245 to get reminder 61. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }61
Since 61 is less than 184, stop the division. The reminder is 61. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}