Evaluate
\frac{49}{3}\approx 16.333333333
Factor
\frac{7 ^ {2}}{3} = 16\frac{1}{3} = 16.333333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)245}\\\end{array}
Use the 1^{st} digit 2 from dividend 245
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)245}\\\end{array}
Since 2 is less than 15, use the next digit 4 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)245}\\\end{array}
Use the 2^{nd} digit 4 from dividend 245
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)245}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}9\\\end{array}
Find closest multiple of 15 to 24. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 24 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)245}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}95\\\end{array}
Use the 3^{rd} digit 5 from dividend 245
\begin{array}{l}\phantom{15)}016\phantom{6}\\15\overline{)245}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}95\\\phantom{15)}\underline{\phantom{9}90\phantom{}}\\\phantom{15)99}5\\\end{array}
Find closest multiple of 15 to 95. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 95 to get reminder 5. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}