Evaluate
\frac{244}{15}\approx 16.266666667
Factor
\frac{2 ^ {2} \cdot 61}{3 \cdot 5} = 16\frac{4}{15} = 16.266666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)244}\\\end{array}
Use the 1^{st} digit 2 from dividend 244
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)244}\\\end{array}
Since 2 is less than 15, use the next digit 4 from dividend 244 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)244}\\\end{array}
Use the 2^{nd} digit 4 from dividend 244
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)244}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}9\\\end{array}
Find closest multiple of 15 to 24. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 24 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)244}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}94\\\end{array}
Use the 3^{rd} digit 4 from dividend 244
\begin{array}{l}\phantom{15)}016\phantom{6}\\15\overline{)244}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}94\\\phantom{15)}\underline{\phantom{9}90\phantom{}}\\\phantom{15)99}4\\\end{array}
Find closest multiple of 15 to 94. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 94 to get reminder 4. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }4
Since 4 is less than 15, stop the division. The reminder is 4. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}