Factor
\left(3x-2\right)\left(3x+2\right)^{2}\left(9x^{2}-6x+4\right)
Evaluate
243x^{5}-108x^{3}+72x^{2}-32
Graph
Share
Copied to clipboard
27x^{3}\left(9x^{2}-4\right)+8\left(9x^{2}-4\right)
Do the grouping 243x^{5}-108x^{3}+72x^{2}-32=\left(243x^{5}-108x^{3}\right)+\left(72x^{2}-32\right), and factor out 27x^{3} in the first and 8 in the second group.
\left(9x^{2}-4\right)\left(27x^{3}+8\right)
Factor out common term 9x^{2}-4 by using distributive property.
\left(3x-2\right)\left(3x+2\right)
Consider 9x^{2}-4. Rewrite 9x^{2}-4 as \left(3x\right)^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x+2\right)\left(9x^{2}-6x+4\right)
Consider 27x^{3}+8. Rewrite 27x^{3}+8 as \left(3x\right)^{3}+2^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(3x-2\right)\left(9x^{2}-6x+4\right)\left(3x+2\right)^{2}
Rewrite the complete factored expression. Polynomial 9x^{2}-6x+4 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}