Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(81x^{4}y-y^{5}\right)
Factor out 3.
y\left(81x^{4}-y^{4}\right)
Consider 81x^{4}y-y^{5}. Factor out y.
\left(9x^{2}-y^{2}\right)\left(9x^{2}+y^{2}\right)
Consider 81x^{4}-y^{4}. Rewrite 81x^{4}-y^{4} as \left(9x^{2}\right)^{2}-\left(y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x-y\right)\left(3x+y\right)
Consider 9x^{2}-y^{2}. Rewrite 9x^{2}-y^{2} as \left(3x\right)^{2}-y^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
3y\left(3x-y\right)\left(3x+y\right)\left(9x^{2}+y^{2}\right)
Rewrite the complete factored expression.