Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

243h^{2}+17h=-10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
243h^{2}+17h-\left(-10\right)=-10-\left(-10\right)
Add 10 to both sides of the equation.
243h^{2}+17h-\left(-10\right)=0
Subtracting -10 from itself leaves 0.
243h^{2}+17h+10=0
Subtract -10 from 0.
h=\frac{-17±\sqrt{17^{2}-4\times 243\times 10}}{2\times 243}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 243 for a, 17 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-17±\sqrt{289-4\times 243\times 10}}{2\times 243}
Square 17.
h=\frac{-17±\sqrt{289-972\times 10}}{2\times 243}
Multiply -4 times 243.
h=\frac{-17±\sqrt{289-9720}}{2\times 243}
Multiply -972 times 10.
h=\frac{-17±\sqrt{-9431}}{2\times 243}
Add 289 to -9720.
h=\frac{-17±\sqrt{9431}i}{2\times 243}
Take the square root of -9431.
h=\frac{-17±\sqrt{9431}i}{486}
Multiply 2 times 243.
h=\frac{-17+\sqrt{9431}i}{486}
Now solve the equation h=\frac{-17±\sqrt{9431}i}{486} when ± is plus. Add -17 to i\sqrt{9431}.
h=\frac{-\sqrt{9431}i-17}{486}
Now solve the equation h=\frac{-17±\sqrt{9431}i}{486} when ± is minus. Subtract i\sqrt{9431} from -17.
h=\frac{-17+\sqrt{9431}i}{486} h=\frac{-\sqrt{9431}i-17}{486}
The equation is now solved.
243h^{2}+17h=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{243h^{2}+17h}{243}=-\frac{10}{243}
Divide both sides by 243.
h^{2}+\frac{17}{243}h=-\frac{10}{243}
Dividing by 243 undoes the multiplication by 243.
h^{2}+\frac{17}{243}h+\left(\frac{17}{486}\right)^{2}=-\frac{10}{243}+\left(\frac{17}{486}\right)^{2}
Divide \frac{17}{243}, the coefficient of the x term, by 2 to get \frac{17}{486}. Then add the square of \frac{17}{486} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+\frac{17}{243}h+\frac{289}{236196}=-\frac{10}{243}+\frac{289}{236196}
Square \frac{17}{486} by squaring both the numerator and the denominator of the fraction.
h^{2}+\frac{17}{243}h+\frac{289}{236196}=-\frac{9431}{236196}
Add -\frac{10}{243} to \frac{289}{236196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h+\frac{17}{486}\right)^{2}=-\frac{9431}{236196}
Factor h^{2}+\frac{17}{243}h+\frac{289}{236196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{17}{486}\right)^{2}}=\sqrt{-\frac{9431}{236196}}
Take the square root of both sides of the equation.
h+\frac{17}{486}=\frac{\sqrt{9431}i}{486} h+\frac{17}{486}=-\frac{\sqrt{9431}i}{486}
Simplify.
h=\frac{-17+\sqrt{9431}i}{486} h=\frac{-\sqrt{9431}i-17}{486}
Subtract \frac{17}{486} from both sides of the equation.