Evaluate
\frac{27}{16}=1.6875
Factor
\frac{3 ^ {3}}{2 ^ {4}} = 1\frac{11}{16} = 1.6875
Share
Copied to clipboard
\begin{array}{l}\phantom{144)}\phantom{1}\\144\overline{)243}\\\end{array}
Use the 1^{st} digit 2 from dividend 243
\begin{array}{l}\phantom{144)}0\phantom{2}\\144\overline{)243}\\\end{array}
Since 2 is less than 144, use the next digit 4 from dividend 243 and add 0 to the quotient
\begin{array}{l}\phantom{144)}0\phantom{3}\\144\overline{)243}\\\end{array}
Use the 2^{nd} digit 4 from dividend 243
\begin{array}{l}\phantom{144)}00\phantom{4}\\144\overline{)243}\\\end{array}
Since 24 is less than 144, use the next digit 3 from dividend 243 and add 0 to the quotient
\begin{array}{l}\phantom{144)}00\phantom{5}\\144\overline{)243}\\\end{array}
Use the 3^{rd} digit 3 from dividend 243
\begin{array}{l}\phantom{144)}001\phantom{6}\\144\overline{)243}\\\phantom{144)}\underline{\phantom{}144\phantom{}}\\\phantom{144)9}99\\\end{array}
Find closest multiple of 144 to 243. We see that 1 \times 144 = 144 is the nearest. Now subtract 144 from 243 to get reminder 99. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }99
Since 99 is less than 144, stop the division. The reminder is 99. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}