Evaluate
\frac{242}{21}\approx 11.523809524
Factor
\frac{2 \cdot 11 ^ {2}}{3 \cdot 7} = 11\frac{11}{21} = 11.523809523809524
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)242}\\\end{array}
Use the 1^{st} digit 2 from dividend 242
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)242}\\\end{array}
Since 2 is less than 21, use the next digit 4 from dividend 242 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)242}\\\end{array}
Use the 2^{nd} digit 4 from dividend 242
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)242}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}3\\\end{array}
Find closest multiple of 21 to 24. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 24 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)242}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}32\\\end{array}
Use the 3^{rd} digit 2 from dividend 242
\begin{array}{l}\phantom{21)}011\phantom{6}\\21\overline{)242}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}32\\\phantom{21)}\underline{\phantom{9}21\phantom{}}\\\phantom{21)9}11\\\end{array}
Find closest multiple of 21 to 32. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 32 to get reminder 11. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }11
Since 11 is less than 21, stop the division. The reminder is 11. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}