Evaluate
\frac{2413}{246}\approx 9.808943089
Factor
\frac{19 \cdot 127}{2 \cdot 3 \cdot 41} = 9\frac{199}{246} = 9.808943089430894
Share
Copied to clipboard
\begin{array}{l}\phantom{246)}\phantom{1}\\246\overline{)2413}\\\end{array}
Use the 1^{st} digit 2 from dividend 2413
\begin{array}{l}\phantom{246)}0\phantom{2}\\246\overline{)2413}\\\end{array}
Since 2 is less than 246, use the next digit 4 from dividend 2413 and add 0 to the quotient
\begin{array}{l}\phantom{246)}0\phantom{3}\\246\overline{)2413}\\\end{array}
Use the 2^{nd} digit 4 from dividend 2413
\begin{array}{l}\phantom{246)}00\phantom{4}\\246\overline{)2413}\\\end{array}
Since 24 is less than 246, use the next digit 1 from dividend 2413 and add 0 to the quotient
\begin{array}{l}\phantom{246)}00\phantom{5}\\246\overline{)2413}\\\end{array}
Use the 3^{rd} digit 1 from dividend 2413
\begin{array}{l}\phantom{246)}000\phantom{6}\\246\overline{)2413}\\\end{array}
Since 241 is less than 246, use the next digit 3 from dividend 2413 and add 0 to the quotient
\begin{array}{l}\phantom{246)}000\phantom{7}\\246\overline{)2413}\\\end{array}
Use the 4^{th} digit 3 from dividend 2413
\begin{array}{l}\phantom{246)}0009\phantom{8}\\246\overline{)2413}\\\phantom{246)}\underline{\phantom{}2214\phantom{}}\\\phantom{246)9}199\\\end{array}
Find closest multiple of 246 to 2413. We see that 9 \times 246 = 2214 is the nearest. Now subtract 2214 from 2413 to get reminder 199. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }199
Since 199 is less than 246, stop the division. The reminder is 199. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}