Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{241s-3100}{x_{2}}\text{, }&x_{2}\neq 0\\x\in \mathrm{C}\text{, }&s=\frac{3100}{241}\text{ and }x_{2}=0\end{matrix}\right.
Solve for s
s=\frac{3100-xx_{2}}{241}
Solve for x
\left\{\begin{matrix}x=-\frac{241s-3100}{x_{2}}\text{, }&x_{2}\neq 0\\x\in \mathrm{R}\text{, }&s=\frac{3100}{241}\text{ and }x_{2}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
xx_{2}+1325=4425-241s
Subtract 241s from both sides.
xx_{2}=4425-241s-1325
Subtract 1325 from both sides.
xx_{2}=3100-241s
Subtract 1325 from 4425 to get 3100.
x_{2}x=3100-241s
The equation is in standard form.
\frac{x_{2}x}{x_{2}}=\frac{3100-241s}{x_{2}}
Divide both sides by x_{2}.
x=\frac{3100-241s}{x_{2}}
Dividing by x_{2} undoes the multiplication by x_{2}.
241s+1325=4425-xx_{2}
Subtract xx_{2} from both sides.
241s=4425-xx_{2}-1325
Subtract 1325 from both sides.
241s=3100-xx_{2}
Subtract 1325 from 4425 to get 3100.
\frac{241s}{241}=\frac{3100-xx_{2}}{241}
Divide both sides by 241.
s=\frac{3100-xx_{2}}{241}
Dividing by 241 undoes the multiplication by 241.
xx_{2}+1325=4425-241s
Subtract 241s from both sides.
xx_{2}=4425-241s-1325
Subtract 1325 from both sides.
xx_{2}=3100-241s
Subtract 1325 from 4425 to get 3100.
x_{2}x=3100-241s
The equation is in standard form.
\frac{x_{2}x}{x_{2}}=\frac{3100-241s}{x_{2}}
Divide both sides by x_{2}.
x=\frac{3100-241s}{x_{2}}
Dividing by x_{2} undoes the multiplication by x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}