Solve for x
x=\frac{\sqrt{285}-15}{2}\approx 0.940971508
x=\frac{-\sqrt{285}-15}{2}\approx -15.940971508
Graph
Share
Copied to clipboard
240x-240=-16x^{2}
Subtract 240 from both sides.
240x-240+16x^{2}=0
Add 16x^{2} to both sides.
16x^{2}+240x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-240±\sqrt{240^{2}-4\times 16\left(-240\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 240 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-240±\sqrt{57600-4\times 16\left(-240\right)}}{2\times 16}
Square 240.
x=\frac{-240±\sqrt{57600-64\left(-240\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-240±\sqrt{57600+15360}}{2\times 16}
Multiply -64 times -240.
x=\frac{-240±\sqrt{72960}}{2\times 16}
Add 57600 to 15360.
x=\frac{-240±16\sqrt{285}}{2\times 16}
Take the square root of 72960.
x=\frac{-240±16\sqrt{285}}{32}
Multiply 2 times 16.
x=\frac{16\sqrt{285}-240}{32}
Now solve the equation x=\frac{-240±16\sqrt{285}}{32} when ± is plus. Add -240 to 16\sqrt{285}.
x=\frac{\sqrt{285}-15}{2}
Divide -240+16\sqrt{285} by 32.
x=\frac{-16\sqrt{285}-240}{32}
Now solve the equation x=\frac{-240±16\sqrt{285}}{32} when ± is minus. Subtract 16\sqrt{285} from -240.
x=\frac{-\sqrt{285}-15}{2}
Divide -240-16\sqrt{285} by 32.
x=\frac{\sqrt{285}-15}{2} x=\frac{-\sqrt{285}-15}{2}
The equation is now solved.
240x+16x^{2}=240
Add 16x^{2} to both sides.
16x^{2}+240x=240
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}+240x}{16}=\frac{240}{16}
Divide both sides by 16.
x^{2}+\frac{240}{16}x=\frac{240}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+15x=\frac{240}{16}
Divide 240 by 16.
x^{2}+15x=15
Divide 240 by 16.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=15+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=15+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{285}{4}
Add 15 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{285}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{285}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{\sqrt{285}}{2} x+\frac{15}{2}=-\frac{\sqrt{285}}{2}
Simplify.
x=\frac{\sqrt{285}-15}{2} x=\frac{-\sqrt{285}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}