Evaluate
\frac{12044}{5}=2408.8
Factor
\frac{2 ^ {2} \cdot 3011}{5} = 2408\frac{4}{5} = 2408.8
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)24088}\\\end{array}
Use the 1^{st} digit 2 from dividend 24088
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)24088}\\\end{array}
Since 2 is less than 10, use the next digit 4 from dividend 24088 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)24088}\\\end{array}
Use the 2^{nd} digit 4 from dividend 24088
\begin{array}{l}\phantom{10)}02\phantom{4}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}4\\\end{array}
Find closest multiple of 10 to 24. We see that 2 \times 10 = 20 is the nearest. Now subtract 20 from 24 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{10)}02\phantom{5}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}40\\\end{array}
Use the 3^{rd} digit 0 from dividend 24088
\begin{array}{l}\phantom{10)}024\phantom{6}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}40\\\phantom{10)}\underline{\phantom{9}40\phantom{99}}\\\phantom{10)999}0\\\end{array}
Find closest multiple of 10 to 40. We see that 4 \times 10 = 40 is the nearest. Now subtract 40 from 40 to get reminder 0. Add 4 to quotient.
\begin{array}{l}\phantom{10)}024\phantom{7}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}40\\\phantom{10)}\underline{\phantom{9}40\phantom{99}}\\\phantom{10)999}8\\\end{array}
Use the 4^{th} digit 8 from dividend 24088
\begin{array}{l}\phantom{10)}0240\phantom{8}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}40\\\phantom{10)}\underline{\phantom{9}40\phantom{99}}\\\phantom{10)999}8\\\end{array}
Since 8 is less than 10, use the next digit 8 from dividend 24088 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0240\phantom{9}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}40\\\phantom{10)}\underline{\phantom{9}40\phantom{99}}\\\phantom{10)999}88\\\end{array}
Use the 5^{th} digit 8 from dividend 24088
\begin{array}{l}\phantom{10)}02408\phantom{10}\\10\overline{)24088}\\\phantom{10)}\underline{\phantom{}20\phantom{999}}\\\phantom{10)9}40\\\phantom{10)}\underline{\phantom{9}40\phantom{99}}\\\phantom{10)999}88\\\phantom{10)}\underline{\phantom{999}80\phantom{}}\\\phantom{10)9999}8\\\end{array}
Find closest multiple of 10 to 88. We see that 8 \times 10 = 80 is the nearest. Now subtract 80 from 88 to get reminder 8. Add 8 to quotient.
\text{Quotient: }2408 \text{Reminder: }8
Since 8 is less than 10, stop the division. The reminder is 8. The topmost line 02408 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2408.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}