Evaluate
\frac{80000}{121}\approx 661.157024793
Factor
\frac{2 ^ {7} \cdot 5 ^ {4}}{11 ^ {2}} = 661\frac{19}{121} = 661.1570247933885
Share
Copied to clipboard
\begin{array}{l}\phantom{363)}\phantom{1}\\363\overline{)240000}\\\end{array}
Use the 1^{st} digit 2 from dividend 240000
\begin{array}{l}\phantom{363)}0\phantom{2}\\363\overline{)240000}\\\end{array}
Since 2 is less than 363, use the next digit 4 from dividend 240000 and add 0 to the quotient
\begin{array}{l}\phantom{363)}0\phantom{3}\\363\overline{)240000}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240000
\begin{array}{l}\phantom{363)}00\phantom{4}\\363\overline{)240000}\\\end{array}
Since 24 is less than 363, use the next digit 0 from dividend 240000 and add 0 to the quotient
\begin{array}{l}\phantom{363)}00\phantom{5}\\363\overline{)240000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240000
\begin{array}{l}\phantom{363)}000\phantom{6}\\363\overline{)240000}\\\end{array}
Since 240 is less than 363, use the next digit 0 from dividend 240000 and add 0 to the quotient
\begin{array}{l}\phantom{363)}000\phantom{7}\\363\overline{)240000}\\\end{array}
Use the 4^{th} digit 0 from dividend 240000
\begin{array}{l}\phantom{363)}0006\phantom{8}\\363\overline{)240000}\\\phantom{363)}\underline{\phantom{}2178\phantom{99}}\\\phantom{363)9}222\\\end{array}
Find closest multiple of 363 to 2400. We see that 6 \times 363 = 2178 is the nearest. Now subtract 2178 from 2400 to get reminder 222. Add 6 to quotient.
\begin{array}{l}\phantom{363)}0006\phantom{9}\\363\overline{)240000}\\\phantom{363)}\underline{\phantom{}2178\phantom{99}}\\\phantom{363)9}2220\\\end{array}
Use the 5^{th} digit 0 from dividend 240000
\begin{array}{l}\phantom{363)}00066\phantom{10}\\363\overline{)240000}\\\phantom{363)}\underline{\phantom{}2178\phantom{99}}\\\phantom{363)9}2220\\\phantom{363)}\underline{\phantom{9}2178\phantom{9}}\\\phantom{363)999}42\\\end{array}
Find closest multiple of 363 to 2220. We see that 6 \times 363 = 2178 is the nearest. Now subtract 2178 from 2220 to get reminder 42. Add 6 to quotient.
\begin{array}{l}\phantom{363)}00066\phantom{11}\\363\overline{)240000}\\\phantom{363)}\underline{\phantom{}2178\phantom{99}}\\\phantom{363)9}2220\\\phantom{363)}\underline{\phantom{9}2178\phantom{9}}\\\phantom{363)999}420\\\end{array}
Use the 6^{th} digit 0 from dividend 240000
\begin{array}{l}\phantom{363)}000661\phantom{12}\\363\overline{)240000}\\\phantom{363)}\underline{\phantom{}2178\phantom{99}}\\\phantom{363)9}2220\\\phantom{363)}\underline{\phantom{9}2178\phantom{9}}\\\phantom{363)999}420\\\phantom{363)}\underline{\phantom{999}363\phantom{}}\\\phantom{363)9999}57\\\end{array}
Find closest multiple of 363 to 420. We see that 1 \times 363 = 363 is the nearest. Now subtract 363 from 420 to get reminder 57. Add 1 to quotient.
\text{Quotient: }661 \text{Reminder: }57
Since 57 is less than 363, stop the division. The reminder is 57. The topmost line 000661 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 661.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}