Solve for x (complex solution)
x=\frac{41+\sqrt{1199}i}{12}\approx 3.416666667+2.885548282i
x=\frac{-\sqrt{1199}i+41}{12}\approx 3.416666667-2.885548282i
Graph
Share
Copied to clipboard
12x^{2}-82x+240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 12\times 240}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -82 for b, and 240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-82\right)±\sqrt{6724-4\times 12\times 240}}{2\times 12}
Square -82.
x=\frac{-\left(-82\right)±\sqrt{6724-48\times 240}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-82\right)±\sqrt{6724-11520}}{2\times 12}
Multiply -48 times 240.
x=\frac{-\left(-82\right)±\sqrt{-4796}}{2\times 12}
Add 6724 to -11520.
x=\frac{-\left(-82\right)±2\sqrt{1199}i}{2\times 12}
Take the square root of -4796.
x=\frac{82±2\sqrt{1199}i}{2\times 12}
The opposite of -82 is 82.
x=\frac{82±2\sqrt{1199}i}{24}
Multiply 2 times 12.
x=\frac{82+2\sqrt{1199}i}{24}
Now solve the equation x=\frac{82±2\sqrt{1199}i}{24} when ± is plus. Add 82 to 2i\sqrt{1199}.
x=\frac{41+\sqrt{1199}i}{12}
Divide 82+2i\sqrt{1199} by 24.
x=\frac{-2\sqrt{1199}i+82}{24}
Now solve the equation x=\frac{82±2\sqrt{1199}i}{24} when ± is minus. Subtract 2i\sqrt{1199} from 82.
x=\frac{-\sqrt{1199}i+41}{12}
Divide 82-2i\sqrt{1199} by 24.
x=\frac{41+\sqrt{1199}i}{12} x=\frac{-\sqrt{1199}i+41}{12}
The equation is now solved.
12x^{2}-82x+240=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12x^{2}-82x+240-240=-240
Subtract 240 from both sides of the equation.
12x^{2}-82x=-240
Subtracting 240 from itself leaves 0.
\frac{12x^{2}-82x}{12}=-\frac{240}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{82}{12}\right)x=-\frac{240}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{41}{6}x=-\frac{240}{12}
Reduce the fraction \frac{-82}{12} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{41}{6}x=-20
Divide -240 by 12.
x^{2}-\frac{41}{6}x+\left(-\frac{41}{12}\right)^{2}=-20+\left(-\frac{41}{12}\right)^{2}
Divide -\frac{41}{6}, the coefficient of the x term, by 2 to get -\frac{41}{12}. Then add the square of -\frac{41}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{41}{6}x+\frac{1681}{144}=-20+\frac{1681}{144}
Square -\frac{41}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{41}{6}x+\frac{1681}{144}=-\frac{1199}{144}
Add -20 to \frac{1681}{144}.
\left(x-\frac{41}{12}\right)^{2}=-\frac{1199}{144}
Factor x^{2}-\frac{41}{6}x+\frac{1681}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{12}\right)^{2}}=\sqrt{-\frac{1199}{144}}
Take the square root of both sides of the equation.
x-\frac{41}{12}=\frac{\sqrt{1199}i}{12} x-\frac{41}{12}=-\frac{\sqrt{1199}i}{12}
Simplify.
x=\frac{41+\sqrt{1199}i}{12} x=\frac{-\sqrt{1199}i+41}{12}
Add \frac{41}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}