Evaluate
\frac{48}{17}\approx 2.823529412
Factor
\frac{2 ^ {4} \cdot 3}{17} = 2\frac{14}{17} = 2.823529411764706
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)240}\\\end{array}
Since 2 is less than 85, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{85)}00\phantom{4}\\85\overline{)240}\\\end{array}
Since 24 is less than 85, use the next digit 0 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{85)}00\phantom{5}\\85\overline{)240}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{85)}002\phantom{6}\\85\overline{)240}\\\phantom{85)}\underline{\phantom{}170\phantom{}}\\\phantom{85)9}70\\\end{array}
Find closest multiple of 85 to 240. We see that 2 \times 85 = 170 is the nearest. Now subtract 170 from 240 to get reminder 70. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }70
Since 70 is less than 85, stop the division. The reminder is 70. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}