Evaluate
\frac{120}{13}\approx 9.230769231
Factor
\frac{2 ^ {3} \cdot 3 \cdot 5}{13} = 9\frac{3}{13} = 9.23076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)240}\\\end{array}
Since 2 is less than 26, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{26)}00\phantom{4}\\26\overline{)240}\\\end{array}
Since 24 is less than 26, use the next digit 0 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{26)}00\phantom{5}\\26\overline{)240}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{26)}009\phantom{6}\\26\overline{)240}\\\phantom{26)}\underline{\phantom{}234\phantom{}}\\\phantom{26)99}6\\\end{array}
Find closest multiple of 26 to 240. We see that 9 \times 26 = 234 is the nearest. Now subtract 234 from 240 to get reminder 6. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }6
Since 6 is less than 26, stop the division. The reminder is 6. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}