Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\begin{array}{l}\phantom{96)}\phantom{1}\\96\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{96)}0\phantom{2}\\96\overline{)240}\\\end{array}
Since 2 is less than 96, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{96)}0\phantom{3}\\96\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{96)}00\phantom{4}\\96\overline{)240}\\\end{array}
Since 24 is less than 96, use the next digit 0 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{96)}00\phantom{5}\\96\overline{)240}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{96)}002\phantom{6}\\96\overline{)240}\\\phantom{96)}\underline{\phantom{}192\phantom{}}\\\phantom{96)9}48\\\end{array}
Find closest multiple of 96 to 240. We see that 2 \times 96 = 192 is the nearest. Now subtract 192 from 240 to get reminder 48. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }48
Since 48 is less than 96, stop the division. The reminder is 48. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}