Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)240}\\\end{array}
Since 2 is less than 20, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)240}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}4\\\end{array}
Find closest multiple of 20 to 24. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 24 to get reminder 4. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)240}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}40\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{20)}012\phantom{6}\\20\overline{)240}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}40\\\phantom{20)}\underline{\phantom{9}40\phantom{}}\\\phantom{20)999}0\\\end{array}
Find closest multiple of 20 to 40. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 40 to get reminder 0. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }0
Since 0 is less than 20, stop the division. The reminder is 0. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}