Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

24.3h^{2}+17h=-10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
24.3h^{2}+17h-\left(-10\right)=-10-\left(-10\right)
Add 10 to both sides of the equation.
24.3h^{2}+17h-\left(-10\right)=0
Subtracting -10 from itself leaves 0.
24.3h^{2}+17h+10=0
Subtract -10 from 0.
h=\frac{-17±\sqrt{17^{2}-4\times 24.3\times 10}}{2\times 24.3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24.3 for a, 17 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-17±\sqrt{289-4\times 24.3\times 10}}{2\times 24.3}
Square 17.
h=\frac{-17±\sqrt{289-97.2\times 10}}{2\times 24.3}
Multiply -4 times 24.3.
h=\frac{-17±\sqrt{289-972}}{2\times 24.3}
Multiply -97.2 times 10.
h=\frac{-17±\sqrt{-683}}{2\times 24.3}
Add 289 to -972.
h=\frac{-17±\sqrt{683}i}{2\times 24.3}
Take the square root of -683.
h=\frac{-17±\sqrt{683}i}{48.6}
Multiply 2 times 24.3.
h=\frac{-17+\sqrt{683}i}{48.6}
Now solve the equation h=\frac{-17±\sqrt{683}i}{48.6} when ± is plus. Add -17 to i\sqrt{683}.
h=\frac{-85+5\sqrt{683}i}{243}
Divide -17+i\sqrt{683} by 48.6 by multiplying -17+i\sqrt{683} by the reciprocal of 48.6.
h=\frac{-\sqrt{683}i-17}{48.6}
Now solve the equation h=\frac{-17±\sqrt{683}i}{48.6} when ± is minus. Subtract i\sqrt{683} from -17.
h=\frac{-5\sqrt{683}i-85}{243}
Divide -17-i\sqrt{683} by 48.6 by multiplying -17-i\sqrt{683} by the reciprocal of 48.6.
h=\frac{-85+5\sqrt{683}i}{243} h=\frac{-5\sqrt{683}i-85}{243}
The equation is now solved.
24.3h^{2}+17h=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{24.3h^{2}+17h}{24.3}=-\frac{10}{24.3}
Divide both sides of the equation by 24.3, which is the same as multiplying both sides by the reciprocal of the fraction.
h^{2}+\frac{17}{24.3}h=-\frac{10}{24.3}
Dividing by 24.3 undoes the multiplication by 24.3.
h^{2}+\frac{170}{243}h=-\frac{10}{24.3}
Divide 17 by 24.3 by multiplying 17 by the reciprocal of 24.3.
h^{2}+\frac{170}{243}h=-\frac{100}{243}
Divide -10 by 24.3 by multiplying -10 by the reciprocal of 24.3.
h^{2}+\frac{170}{243}h+\frac{85}{243}^{2}=-\frac{100}{243}+\frac{85}{243}^{2}
Divide \frac{170}{243}, the coefficient of the x term, by 2 to get \frac{85}{243}. Then add the square of \frac{85}{243} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+\frac{170}{243}h+\frac{7225}{59049}=-\frac{100}{243}+\frac{7225}{59049}
Square \frac{85}{243} by squaring both the numerator and the denominator of the fraction.
h^{2}+\frac{170}{243}h+\frac{7225}{59049}=-\frac{17075}{59049}
Add -\frac{100}{243} to \frac{7225}{59049} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h+\frac{85}{243}\right)^{2}=-\frac{17075}{59049}
Factor h^{2}+\frac{170}{243}h+\frac{7225}{59049}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{85}{243}\right)^{2}}=\sqrt{-\frac{17075}{59049}}
Take the square root of both sides of the equation.
h+\frac{85}{243}=\frac{5\sqrt{683}i}{243} h+\frac{85}{243}=-\frac{5\sqrt{683}i}{243}
Simplify.
h=\frac{-85+5\sqrt{683}i}{243} h=\frac{-5\sqrt{683}i-85}{243}
Subtract \frac{85}{243} from both sides of the equation.