Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24=\frac{3}{2}x^{2}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}=24
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}x^{2}-24=0
Subtract 24 from both sides.
x^{2}-16=0
Divide both sides by \frac{3}{2}.
\left(x-4\right)\left(x+4\right)=0
Consider x^{2}-16. Rewrite x^{2}-16 as x^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
To find equation solutions, solve x-4=0 and x+4=0.
24=\frac{3}{2}x^{2}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}=24
Swap sides so that all variable terms are on the left hand side.
x^{2}=24\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
x^{2}=16
Multiply 24 and \frac{2}{3} to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
24=\frac{3}{2}x^{2}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}=24
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}x^{2}-24=0
Subtract 24 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{2}\left(-24\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3}{2}\left(-24\right)}}{2\times \frac{3}{2}}
Square 0.
x=\frac{0±\sqrt{-6\left(-24\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{0±\sqrt{144}}{2\times \frac{3}{2}}
Multiply -6 times -24.
x=\frac{0±12}{2\times \frac{3}{2}}
Take the square root of 144.
x=\frac{0±12}{3}
Multiply 2 times \frac{3}{2}.
x=4
Now solve the equation x=\frac{0±12}{3} when ± is plus. Divide 12 by 3.
x=-4
Now solve the equation x=\frac{0±12}{3} when ± is minus. Divide -12 by 3.
x=4 x=-4
The equation is now solved.