Factor
2y\left(3-x\right)\left(3x+4\right)
Evaluate
2y\left(3-x\right)\left(3x+4\right)
Share
Copied to clipboard
2\left(12y+5xy-3x^{2}y\right)
Factor out 2.
y\left(12+5x-3x^{2}\right)
Consider 12y+5xy-3x^{2}y. Factor out y.
-3x^{2}+5x+12
Consider 12+5x-3x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=-3\times 12=-36
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=9 b=-4
The solution is the pair that gives sum 5.
\left(-3x^{2}+9x\right)+\left(-4x+12\right)
Rewrite -3x^{2}+5x+12 as \left(-3x^{2}+9x\right)+\left(-4x+12\right).
3x\left(-x+3\right)+4\left(-x+3\right)
Factor out 3x in the first and 4 in the second group.
\left(-x+3\right)\left(3x+4\right)
Factor out common term -x+3 by using distributive property.
2y\left(-x+3\right)\left(3x+4\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}