Solve for x (complex solution)
x=-6\sqrt{6}i+12\approx 12-14.696938457i
x=12+6\sqrt{6}i\approx 12+14.696938457i
Graph
Share
Copied to clipboard
-x^{2}+24x=360
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+24x-360=360-360
Subtract 360 from both sides of the equation.
-x^{2}+24x-360=0
Subtracting 360 from itself leaves 0.
x=\frac{-24±\sqrt{24^{2}-4\left(-1\right)\left(-360\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 24 for b, and -360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-1\right)\left(-360\right)}}{2\left(-1\right)}
Square 24.
x=\frac{-24±\sqrt{576+4\left(-360\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-24±\sqrt{576-1440}}{2\left(-1\right)}
Multiply 4 times -360.
x=\frac{-24±\sqrt{-864}}{2\left(-1\right)}
Add 576 to -1440.
x=\frac{-24±12\sqrt{6}i}{2\left(-1\right)}
Take the square root of -864.
x=\frac{-24±12\sqrt{6}i}{-2}
Multiply 2 times -1.
x=\frac{-24+12\sqrt{6}i}{-2}
Now solve the equation x=\frac{-24±12\sqrt{6}i}{-2} when ± is plus. Add -24 to 12i\sqrt{6}.
x=-6\sqrt{6}i+12
Divide -24+12i\sqrt{6} by -2.
x=\frac{-12\sqrt{6}i-24}{-2}
Now solve the equation x=\frac{-24±12\sqrt{6}i}{-2} when ± is minus. Subtract 12i\sqrt{6} from -24.
x=12+6\sqrt{6}i
Divide -24-12i\sqrt{6} by -2.
x=-6\sqrt{6}i+12 x=12+6\sqrt{6}i
The equation is now solved.
-x^{2}+24x=360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+24x}{-1}=\frac{360}{-1}
Divide both sides by -1.
x^{2}+\frac{24}{-1}x=\frac{360}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-24x=\frac{360}{-1}
Divide 24 by -1.
x^{2}-24x=-360
Divide 360 by -1.
x^{2}-24x+\left(-12\right)^{2}=-360+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-24x+144=-360+144
Square -12.
x^{2}-24x+144=-216
Add -360 to 144.
\left(x-12\right)^{2}=-216
Factor x^{2}-24x+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12\right)^{2}}=\sqrt{-216}
Take the square root of both sides of the equation.
x-12=6\sqrt{6}i x-12=-6\sqrt{6}i
Simplify.
x=12+6\sqrt{6}i x=-6\sqrt{6}i+12
Add 12 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}