Solve for x (complex solution)
x=\frac{\sqrt{6}i}{12}+\frac{1}{2}\approx 0.5+0.204124145i
x=-\frac{\sqrt{6}i}{12}+\frac{1}{2}\approx 0.5-0.204124145i
Graph
Share
Copied to clipboard
24x^{2}-24x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 24\times 7}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -24 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 24\times 7}}{2\times 24}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-96\times 7}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-24\right)±\sqrt{576-672}}{2\times 24}
Multiply -96 times 7.
x=\frac{-\left(-24\right)±\sqrt{-96}}{2\times 24}
Add 576 to -672.
x=\frac{-\left(-24\right)±4\sqrt{6}i}{2\times 24}
Take the square root of -96.
x=\frac{24±4\sqrt{6}i}{2\times 24}
The opposite of -24 is 24.
x=\frac{24±4\sqrt{6}i}{48}
Multiply 2 times 24.
x=\frac{24+4\sqrt{6}i}{48}
Now solve the equation x=\frac{24±4\sqrt{6}i}{48} when ± is plus. Add 24 to 4i\sqrt{6}.
x=\frac{\sqrt{6}i}{12}+\frac{1}{2}
Divide 24+4i\sqrt{6} by 48.
x=\frac{-4\sqrt{6}i+24}{48}
Now solve the equation x=\frac{24±4\sqrt{6}i}{48} when ± is minus. Subtract 4i\sqrt{6} from 24.
x=-\frac{\sqrt{6}i}{12}+\frac{1}{2}
Divide 24-4i\sqrt{6} by 48.
x=\frac{\sqrt{6}i}{12}+\frac{1}{2} x=-\frac{\sqrt{6}i}{12}+\frac{1}{2}
The equation is now solved.
24x^{2}-24x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
24x^{2}-24x+7-7=-7
Subtract 7 from both sides of the equation.
24x^{2}-24x=-7
Subtracting 7 from itself leaves 0.
\frac{24x^{2}-24x}{24}=-\frac{7}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{24}{24}\right)x=-\frac{7}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-x=-\frac{7}{24}
Divide -24 by 24.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{7}{24}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{7}{24}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{1}{24}
Add -\frac{7}{24} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{1}{24}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{1}{24}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{6}i}{12} x-\frac{1}{2}=-\frac{\sqrt{6}i}{12}
Simplify.
x=\frac{\sqrt{6}i}{12}+\frac{1}{2} x=-\frac{\sqrt{6}i}{12}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
x ^ 2 -1x +\frac{7}{24} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 24
r + s = 1 rs = \frac{7}{24}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{2} - u s = \frac{1}{2} + u
Two numbers r and s sum up to 1 exactly when the average of the two numbers is \frac{1}{2}*1 = \frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{2} - u) (\frac{1}{2} + u) = \frac{7}{24}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{7}{24}
\frac{1}{4} - u^2 = \frac{7}{24}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{7}{24}-\frac{1}{4} = \frac{1}{24}
Simplify the expression by subtracting \frac{1}{4} on both sides
u^2 = -\frac{1}{24} u = \pm\sqrt{-\frac{1}{24}} = \pm \frac{1}{\sqrt{24}}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{2} - \frac{1}{\sqrt{24}}i = 0.500 - 0.204i s = \frac{1}{2} + \frac{1}{\sqrt{24}}i = 0.500 + 0.204i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}