Factor
\left(8x-5\right)\left(3x+2\right)
Evaluate
24x^{2}+x-10
Graph
Share
Copied to clipboard
a+b=1 ab=24\left(-10\right)=-240
Factor the expression by grouping. First, the expression needs to be rewritten as 24x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
a=-15 b=16
The solution is the pair that gives sum 1.
\left(24x^{2}-15x\right)+\left(16x-10\right)
Rewrite 24x^{2}+x-10 as \left(24x^{2}-15x\right)+\left(16x-10\right).
3x\left(8x-5\right)+2\left(8x-5\right)
Factor out 3x in the first and 2 in the second group.
\left(8x-5\right)\left(3x+2\right)
Factor out common term 8x-5 by using distributive property.
24x^{2}+x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 24\left(-10\right)}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\times 24\left(-10\right)}}{2\times 24}
Square 1.
x=\frac{-1±\sqrt{1-96\left(-10\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{-1±\sqrt{1+960}}{2\times 24}
Multiply -96 times -10.
x=\frac{-1±\sqrt{961}}{2\times 24}
Add 1 to 960.
x=\frac{-1±31}{2\times 24}
Take the square root of 961.
x=\frac{-1±31}{48}
Multiply 2 times 24.
x=\frac{30}{48}
Now solve the equation x=\frac{-1±31}{48} when ± is plus. Add -1 to 31.
x=\frac{5}{8}
Reduce the fraction \frac{30}{48} to lowest terms by extracting and canceling out 6.
x=-\frac{32}{48}
Now solve the equation x=\frac{-1±31}{48} when ± is minus. Subtract 31 from -1.
x=-\frac{2}{3}
Reduce the fraction \frac{-32}{48} to lowest terms by extracting and canceling out 16.
24x^{2}+x-10=24\left(x-\frac{5}{8}\right)\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{8} for x_{1} and -\frac{2}{3} for x_{2}.
24x^{2}+x-10=24\left(x-\frac{5}{8}\right)\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}+x-10=24\times \frac{8x-5}{8}\left(x+\frac{2}{3}\right)
Subtract \frac{5}{8} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+x-10=24\times \frac{8x-5}{8}\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+x-10=24\times \frac{\left(8x-5\right)\left(3x+2\right)}{8\times 3}
Multiply \frac{8x-5}{8} times \frac{3x+2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
24x^{2}+x-10=24\times \frac{\left(8x-5\right)\left(3x+2\right)}{24}
Multiply 8 times 3.
24x^{2}+x-10=\left(8x-5\right)\left(3x+2\right)
Cancel out 24, the greatest common factor in 24 and 24.
x ^ 2 +\frac{1}{24}x -\frac{5}{12} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 24
r + s = -\frac{1}{24} rs = -\frac{5}{12}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{48} - u s = -\frac{1}{48} + u
Two numbers r and s sum up to -\frac{1}{24} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{24} = -\frac{1}{48}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{48} - u) (-\frac{1}{48} + u) = -\frac{5}{12}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{12}
\frac{1}{2304} - u^2 = -\frac{5}{12}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{12}-\frac{1}{2304} = -\frac{961}{2304}
Simplify the expression by subtracting \frac{1}{2304} on both sides
u^2 = \frac{961}{2304} u = \pm\sqrt{\frac{961}{2304}} = \pm \frac{31}{48}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{48} - \frac{31}{48} = -0.667 s = -\frac{1}{48} + \frac{31}{48} = 0.625
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}