Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(8x^{2}+7x\right)
Factor out 3.
x\left(8x+7\right)
Consider 8x^{2}+7x. Factor out x.
3x\left(8x+7\right)
Rewrite the complete factored expression.
24x^{2}+21x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-21±\sqrt{21^{2}}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±21}{2\times 24}
Take the square root of 21^{2}.
x=\frac{-21±21}{48}
Multiply 2 times 24.
x=\frac{0}{48}
Now solve the equation x=\frac{-21±21}{48} when ± is plus. Add -21 to 21.
x=0
Divide 0 by 48.
x=-\frac{42}{48}
Now solve the equation x=\frac{-21±21}{48} when ± is minus. Subtract 21 from -21.
x=-\frac{7}{8}
Reduce the fraction \frac{-42}{48} to lowest terms by extracting and canceling out 6.
24x^{2}+21x=24x\left(x-\left(-\frac{7}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{7}{8} for x_{2}.
24x^{2}+21x=24x\left(x+\frac{7}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}+21x=24x\times \frac{8x+7}{8}
Add \frac{7}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+21x=3x\left(8x+7\right)
Cancel out 8, the greatest common factor in 24 and 8.