Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(6x^{2}+5x\right)
Factor out 4.
x\left(6x+5\right)
Consider 6x^{2}+5x. Factor out x.
4x\left(6x+5\right)
Rewrite the complete factored expression.
24x^{2}+20x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±20}{2\times 24}
Take the square root of 20^{2}.
x=\frac{-20±20}{48}
Multiply 2 times 24.
x=\frac{0}{48}
Now solve the equation x=\frac{-20±20}{48} when ± is plus. Add -20 to 20.
x=0
Divide 0 by 48.
x=-\frac{40}{48}
Now solve the equation x=\frac{-20±20}{48} when ± is minus. Subtract 20 from -20.
x=-\frac{5}{6}
Reduce the fraction \frac{-40}{48} to lowest terms by extracting and canceling out 8.
24x^{2}+20x=24x\left(x-\left(-\frac{5}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{6} for x_{2}.
24x^{2}+20x=24x\left(x+\frac{5}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}+20x=24x\times \frac{6x+5}{6}
Add \frac{5}{6} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+20x=4x\left(6x+5\right)
Cancel out 6, the greatest common factor in 24 and 6.