Solve for x
x = \frac{\sqrt{15}}{3} \approx 1.290994449
x = -\frac{\sqrt{15}}{3} \approx -1.290994449
Graph
Share
Copied to clipboard
24x=31-\left(16-24x+9x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-3x\right)^{2}.
24x=31-16+24x-9x^{2}
To find the opposite of 16-24x+9x^{2}, find the opposite of each term.
24x=15+24x-9x^{2}
Subtract 16 from 31 to get 15.
24x-24x=15-9x^{2}
Subtract 24x from both sides.
0=15-9x^{2}
Combine 24x and -24x to get 0.
15-9x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-9x^{2}=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-15}{-9}
Divide both sides by -9.
x^{2}=\frac{5}{3}
Reduce the fraction \frac{-15}{-9} to lowest terms by extracting and canceling out -3.
x=\frac{\sqrt{15}}{3} x=-\frac{\sqrt{15}}{3}
Take the square root of both sides of the equation.
24x=31-\left(16-24x+9x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-3x\right)^{2}.
24x=31-16+24x-9x^{2}
To find the opposite of 16-24x+9x^{2}, find the opposite of each term.
24x=15+24x-9x^{2}
Subtract 16 from 31 to get 15.
24x-15=24x-9x^{2}
Subtract 15 from both sides.
24x-15-24x=-9x^{2}
Subtract 24x from both sides.
-15=-9x^{2}
Combine 24x and -24x to get 0.
-9x^{2}=-15
Swap sides so that all variable terms are on the left hand side.
-9x^{2}+15=0
Add 15 to both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-9\right)\times 15}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 0 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-9\right)\times 15}}{2\left(-9\right)}
Square 0.
x=\frac{0±\sqrt{36\times 15}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{0±\sqrt{540}}{2\left(-9\right)}
Multiply 36 times 15.
x=\frac{0±6\sqrt{15}}{2\left(-9\right)}
Take the square root of 540.
x=\frac{0±6\sqrt{15}}{-18}
Multiply 2 times -9.
x=-\frac{\sqrt{15}}{3}
Now solve the equation x=\frac{0±6\sqrt{15}}{-18} when ± is plus.
x=\frac{\sqrt{15}}{3}
Now solve the equation x=\frac{0±6\sqrt{15}}{-18} when ± is minus.
x=-\frac{\sqrt{15}}{3} x=\frac{\sqrt{15}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}