Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

8\left(3v^{2}+10v\right)
Factor out 8.
v\left(3v+10\right)
Consider 3v^{2}+10v. Factor out v.
8v\left(3v+10\right)
Rewrite the complete factored expression.
24v^{2}+80v=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-80±\sqrt{80^{2}}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-80±80}{2\times 24}
Take the square root of 80^{2}.
v=\frac{-80±80}{48}
Multiply 2 times 24.
v=\frac{0}{48}
Now solve the equation v=\frac{-80±80}{48} when ± is plus. Add -80 to 80.
v=0
Divide 0 by 48.
v=-\frac{160}{48}
Now solve the equation v=\frac{-80±80}{48} when ± is minus. Subtract 80 from -80.
v=-\frac{10}{3}
Reduce the fraction \frac{-160}{48} to lowest terms by extracting and canceling out 16.
24v^{2}+80v=24v\left(v-\left(-\frac{10}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{10}{3} for x_{2}.
24v^{2}+80v=24v\left(v+\frac{10}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24v^{2}+80v=24v\times \frac{3v+10}{3}
Add \frac{10}{3} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24v^{2}+80v=8v\left(3v+10\right)
Cancel out 3, the greatest common factor in 24 and 3.