Factor
3\left(8d-3\right)\left(d+2\right)
Evaluate
3\left(8d-3\right)\left(d+2\right)
Share
Copied to clipboard
3\left(8d^{2}+13d-6\right)
Factor out 3.
a+b=13 ab=8\left(-6\right)=-48
Consider 8d^{2}+13d-6. Factor the expression by grouping. First, the expression needs to be rewritten as 8d^{2}+ad+bd-6. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=-3 b=16
The solution is the pair that gives sum 13.
\left(8d^{2}-3d\right)+\left(16d-6\right)
Rewrite 8d^{2}+13d-6 as \left(8d^{2}-3d\right)+\left(16d-6\right).
d\left(8d-3\right)+2\left(8d-3\right)
Factor out d in the first and 2 in the second group.
\left(8d-3\right)\left(d+2\right)
Factor out common term 8d-3 by using distributive property.
3\left(8d-3\right)\left(d+2\right)
Rewrite the complete factored expression.
24d^{2}+39d-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-39±\sqrt{39^{2}-4\times 24\left(-18\right)}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-39±\sqrt{1521-4\times 24\left(-18\right)}}{2\times 24}
Square 39.
d=\frac{-39±\sqrt{1521-96\left(-18\right)}}{2\times 24}
Multiply -4 times 24.
d=\frac{-39±\sqrt{1521+1728}}{2\times 24}
Multiply -96 times -18.
d=\frac{-39±\sqrt{3249}}{2\times 24}
Add 1521 to 1728.
d=\frac{-39±57}{2\times 24}
Take the square root of 3249.
d=\frac{-39±57}{48}
Multiply 2 times 24.
d=\frac{18}{48}
Now solve the equation d=\frac{-39±57}{48} when ± is plus. Add -39 to 57.
d=\frac{3}{8}
Reduce the fraction \frac{18}{48} to lowest terms by extracting and canceling out 6.
d=-\frac{96}{48}
Now solve the equation d=\frac{-39±57}{48} when ± is minus. Subtract 57 from -39.
d=-2
Divide -96 by 48.
24d^{2}+39d-18=24\left(d-\frac{3}{8}\right)\left(d-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{8} for x_{1} and -2 for x_{2}.
24d^{2}+39d-18=24\left(d-\frac{3}{8}\right)\left(d+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24d^{2}+39d-18=24\times \frac{8d-3}{8}\left(d+2\right)
Subtract \frac{3}{8} from d by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
24d^{2}+39d-18=3\left(8d-3\right)\left(d+2\right)
Cancel out 8, the greatest common factor in 24 and 8.
x ^ 2 +\frac{13}{8}x -\frac{3}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 24
r + s = -\frac{13}{8} rs = -\frac{3}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{13}{16} - u s = -\frac{13}{16} + u
Two numbers r and s sum up to -\frac{13}{8} exactly when the average of the two numbers is \frac{1}{2}*-\frac{13}{8} = -\frac{13}{16}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{13}{16} - u) (-\frac{13}{16} + u) = -\frac{3}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{4}
\frac{169}{256} - u^2 = -\frac{3}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{4}-\frac{169}{256} = -\frac{361}{256}
Simplify the expression by subtracting \frac{169}{256} on both sides
u^2 = \frac{361}{256} u = \pm\sqrt{\frac{361}{256}} = \pm \frac{19}{16}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{13}{16} - \frac{19}{16} = -2 s = -\frac{13}{16} + \frac{19}{16} = 0.375
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}