Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

48-\left(4\left(6-2t\right)-2t\left(4-t\right)-6t\right)\left(2\times 2+1\right)=32
Multiply both sides of the equation by 2.
48-\left(24-8t-2t\left(4-t\right)-6t\right)\left(2\times 2+1\right)=32
Use the distributive property to multiply 4 by 6-2t.
48-\left(24-8t-2t\left(4-t\right)-6t\right)\left(4+1\right)=32
Multiply 2 and 2 to get 4.
48-\left(24-8t-2t\left(4-t\right)-6t\right)\times 5=32
Add 4 and 1 to get 5.
48-\left(5\left(24-8t-2t\left(4-t\right)\right)-30t\right)=32
Use the distributive property to multiply 24-8t-2t\left(4-t\right)-6t by 5.
48-5\left(24-8t-2t\left(4-t\right)\right)-\left(-30t\right)=32
To find the opposite of 5\left(24-8t-2t\left(4-t\right)\right)-30t, find the opposite of each term.
48-5\left(24-8t-2t\left(4-t\right)\right)+30t=32
The opposite of -30t is 30t.
48-5\left(24-8t-2t\left(4-t\right)\right)+30t-32=0
Subtract 32 from both sides.
16-5\left(24-8t-2t\left(4-t\right)\right)+30t=0
Subtract 32 from 48 to get 16.
-5\left(24-8t-2t\left(4-t\right)\right)+30t=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
-5\left(24-8t-2t\left(4-t\right)\right)+30t+16=0
Add 16 to both sides.
-5\left(24-8t-8t+2t^{2}\right)+30t+16=0
Use the distributive property to multiply -2t by 4-t.
-5\left(24-16t+2t^{2}\right)+30t+16=0
Combine -8t and -8t to get -16t.
-120+80t-10t^{2}+30t+16=0
Use the distributive property to multiply -5 by 24-16t+2t^{2}.
-120+110t-10t^{2}+16=0
Combine 80t and 30t to get 110t.
-104+110t-10t^{2}=0
Add -120 and 16 to get -104.
-10t^{2}+110t-104=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-110±\sqrt{110^{2}-4\left(-10\right)\left(-104\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 110 for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-110±\sqrt{12100-4\left(-10\right)\left(-104\right)}}{2\left(-10\right)}
Square 110.
t=\frac{-110±\sqrt{12100+40\left(-104\right)}}{2\left(-10\right)}
Multiply -4 times -10.
t=\frac{-110±\sqrt{12100-4160}}{2\left(-10\right)}
Multiply 40 times -104.
t=\frac{-110±\sqrt{7940}}{2\left(-10\right)}
Add 12100 to -4160.
t=\frac{-110±2\sqrt{1985}}{2\left(-10\right)}
Take the square root of 7940.
t=\frac{-110±2\sqrt{1985}}{-20}
Multiply 2 times -10.
t=\frac{2\sqrt{1985}-110}{-20}
Now solve the equation t=\frac{-110±2\sqrt{1985}}{-20} when ± is plus. Add -110 to 2\sqrt{1985}.
t=-\frac{\sqrt{1985}}{10}+\frac{11}{2}
Divide -110+2\sqrt{1985} by -20.
t=\frac{-2\sqrt{1985}-110}{-20}
Now solve the equation t=\frac{-110±2\sqrt{1985}}{-20} when ± is minus. Subtract 2\sqrt{1985} from -110.
t=\frac{\sqrt{1985}}{10}+\frac{11}{2}
Divide -110-2\sqrt{1985} by -20.
t=-\frac{\sqrt{1985}}{10}+\frac{11}{2} t=\frac{\sqrt{1985}}{10}+\frac{11}{2}
The equation is now solved.
48-\left(4\left(6-2t\right)-2t\left(4-t\right)-6t\right)\left(2\times 2+1\right)=32
Multiply both sides of the equation by 2.
48-\left(24-8t-2t\left(4-t\right)-6t\right)\left(2\times 2+1\right)=32
Use the distributive property to multiply 4 by 6-2t.
48-\left(24-8t-2t\left(4-t\right)-6t\right)\left(4+1\right)=32
Multiply 2 and 2 to get 4.
48-\left(24-8t-2t\left(4-t\right)-6t\right)\times 5=32
Add 4 and 1 to get 5.
48-\left(5\left(24-8t-2t\left(4-t\right)\right)-30t\right)=32
Use the distributive property to multiply 24-8t-2t\left(4-t\right)-6t by 5.
48-5\left(24-8t-2t\left(4-t\right)\right)-\left(-30t\right)=32
To find the opposite of 5\left(24-8t-2t\left(4-t\right)\right)-30t, find the opposite of each term.
48-5\left(24-8t-2t\left(4-t\right)\right)+30t=32
The opposite of -30t is 30t.
-5\left(24-8t-2t\left(4-t\right)\right)+30t=32-48
Subtract 48 from both sides.
-5\left(24-8t-2t\left(4-t\right)\right)+30t=-16
Subtract 48 from 32 to get -16.
-5\left(24-8t-8t+2t^{2}\right)+30t=-16
Use the distributive property to multiply -2t by 4-t.
-5\left(24-16t+2t^{2}\right)+30t=-16
Combine -8t and -8t to get -16t.
-120+80t-10t^{2}+30t=-16
Use the distributive property to multiply -5 by 24-16t+2t^{2}.
-120+110t-10t^{2}=-16
Combine 80t and 30t to get 110t.
110t-10t^{2}=-16+120
Add 120 to both sides.
110t-10t^{2}=104
Add -16 and 120 to get 104.
-10t^{2}+110t=104
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10t^{2}+110t}{-10}=\frac{104}{-10}
Divide both sides by -10.
t^{2}+\frac{110}{-10}t=\frac{104}{-10}
Dividing by -10 undoes the multiplication by -10.
t^{2}-11t=\frac{104}{-10}
Divide 110 by -10.
t^{2}-11t=-\frac{52}{5}
Reduce the fraction \frac{104}{-10} to lowest terms by extracting and canceling out 2.
t^{2}-11t+\left(-\frac{11}{2}\right)^{2}=-\frac{52}{5}+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-11t+\frac{121}{4}=-\frac{52}{5}+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-11t+\frac{121}{4}=\frac{397}{20}
Add -\frac{52}{5} to \frac{121}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{11}{2}\right)^{2}=\frac{397}{20}
Factor t^{2}-11t+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{11}{2}\right)^{2}}=\sqrt{\frac{397}{20}}
Take the square root of both sides of the equation.
t-\frac{11}{2}=\frac{\sqrt{1985}}{10} t-\frac{11}{2}=-\frac{\sqrt{1985}}{10}
Simplify.
t=\frac{\sqrt{1985}}{10}+\frac{11}{2} t=-\frac{\sqrt{1985}}{10}+\frac{11}{2}
Add \frac{11}{2} to both sides of the equation.