Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
24x^{2}-82x+63=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 24\times 63}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -82 for b, and 63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-82\right)±\sqrt{6724-4\times 24\times 63}}{2\times 24}
Square -82.
x=\frac{-\left(-82\right)±\sqrt{6724-96\times 63}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-82\right)±\sqrt{6724-6048}}{2\times 24}
Multiply -96 times 63.
x=\frac{-\left(-82\right)±\sqrt{676}}{2\times 24}
Add 6724 to -6048.
x=\frac{-\left(-82\right)±26}{2\times 24}
Take the square root of 676.
x=\frac{82±26}{2\times 24}
The opposite of -82 is 82.
x=\frac{82±26}{48}
Multiply 2 times 24.
x=\frac{108}{48}
Now solve the equation x=\frac{82±26}{48} when ± is plus. Add 82 to 26.
x=\frac{9}{4}
Reduce the fraction \frac{108}{48} to lowest terms by extracting and canceling out 12.
x=\frac{56}{48}
Now solve the equation x=\frac{82±26}{48} when ± is minus. Subtract 26 from 82.
x=\frac{7}{6}
Reduce the fraction \frac{56}{48} to lowest terms by extracting and canceling out 8.
x=\frac{9}{4} x=\frac{7}{6}
The equation is now solved.
24x^{2}-82x+63=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
24x^{2}-82x+63-63=-63
Subtract 63 from both sides of the equation.
24x^{2}-82x=-63
Subtracting 63 from itself leaves 0.
\frac{24x^{2}-82x}{24}=-\frac{63}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{82}{24}\right)x=-\frac{63}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{41}{12}x=-\frac{63}{24}
Reduce the fraction \frac{-82}{24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{41}{12}x=-\frac{21}{8}
Reduce the fraction \frac{-63}{24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{41}{12}x+\left(-\frac{41}{24}\right)^{2}=-\frac{21}{8}+\left(-\frac{41}{24}\right)^{2}
Divide -\frac{41}{12}, the coefficient of the x term, by 2 to get -\frac{41}{24}. Then add the square of -\frac{41}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{41}{12}x+\frac{1681}{576}=-\frac{21}{8}+\frac{1681}{576}
Square -\frac{41}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{41}{12}x+\frac{1681}{576}=\frac{169}{576}
Add -\frac{21}{8} to \frac{1681}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{41}{24}\right)^{2}=\frac{169}{576}
Factor x^{2}-\frac{41}{12}x+\frac{1681}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{24}\right)^{2}}=\sqrt{\frac{169}{576}}
Take the square root of both sides of the equation.
x-\frac{41}{24}=\frac{13}{24} x-\frac{41}{24}=-\frac{13}{24}
Simplify.
x=\frac{9}{4} x=\frac{7}{6}
Add \frac{41}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}