Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24x^{2}-4x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 24\left(-3\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 24\left(-3\right)}}{2\times 24}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-96\left(-3\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-4\right)±\sqrt{16+288}}{2\times 24}
Multiply -96 times -3.
x=\frac{-\left(-4\right)±\sqrt{304}}{2\times 24}
Add 16 to 288.
x=\frac{-\left(-4\right)±4\sqrt{19}}{2\times 24}
Take the square root of 304.
x=\frac{4±4\sqrt{19}}{2\times 24}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{19}}{48}
Multiply 2 times 24.
x=\frac{4\sqrt{19}+4}{48}
Now solve the equation x=\frac{4±4\sqrt{19}}{48} when ± is plus. Add 4 to 4\sqrt{19}.
x=\frac{\sqrt{19}+1}{12}
Divide 4+4\sqrt{19} by 48.
x=\frac{4-4\sqrt{19}}{48}
Now solve the equation x=\frac{4±4\sqrt{19}}{48} when ± is minus. Subtract 4\sqrt{19} from 4.
x=\frac{1-\sqrt{19}}{12}
Divide 4-4\sqrt{19} by 48.
x=\frac{\sqrt{19}+1}{12} x=\frac{1-\sqrt{19}}{12}
The equation is now solved.
24x^{2}-4x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
24x^{2}-4x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
24x^{2}-4x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
24x^{2}-4x=3
Subtract -3 from 0.
\frac{24x^{2}-4x}{24}=\frac{3}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{4}{24}\right)x=\frac{3}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{1}{6}x=\frac{3}{24}
Reduce the fraction \frac{-4}{24} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{6}x=\frac{1}{8}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{1}{8}+\left(-\frac{1}{12}\right)^{2}
Divide -\frac{1}{6}, the coefficient of the x term, by 2 to get -\frac{1}{12}. Then add the square of -\frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{1}{8}+\frac{1}{144}
Square -\frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{19}{144}
Add \frac{1}{8} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{12}\right)^{2}=\frac{19}{144}
Factor x^{2}-\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{19}{144}}
Take the square root of both sides of the equation.
x-\frac{1}{12}=\frac{\sqrt{19}}{12} x-\frac{1}{12}=-\frac{\sqrt{19}}{12}
Simplify.
x=\frac{\sqrt{19}+1}{12} x=\frac{1-\sqrt{19}}{12}
Add \frac{1}{12} to both sides of the equation.