Solve for x
x=\frac{3}{4}=0.75
x=\frac{5}{6}\approx 0.833333333
Graph
Share
Copied to clipboard
a+b=-38 ab=24\times 15=360
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 24x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-360 -2,-180 -3,-120 -4,-90 -5,-72 -6,-60 -8,-45 -9,-40 -10,-36 -12,-30 -15,-24 -18,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 360.
-1-360=-361 -2-180=-182 -3-120=-123 -4-90=-94 -5-72=-77 -6-60=-66 -8-45=-53 -9-40=-49 -10-36=-46 -12-30=-42 -15-24=-39 -18-20=-38
Calculate the sum for each pair.
a=-20 b=-18
The solution is the pair that gives sum -38.
\left(24x^{2}-20x\right)+\left(-18x+15\right)
Rewrite 24x^{2}-38x+15 as \left(24x^{2}-20x\right)+\left(-18x+15\right).
4x\left(6x-5\right)-3\left(6x-5\right)
Factor out 4x in the first and -3 in the second group.
\left(6x-5\right)\left(4x-3\right)
Factor out common term 6x-5 by using distributive property.
x=\frac{5}{6} x=\frac{3}{4}
To find equation solutions, solve 6x-5=0 and 4x-3=0.
24x^{2}-38x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\times 24\times 15}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -38 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38\right)±\sqrt{1444-4\times 24\times 15}}{2\times 24}
Square -38.
x=\frac{-\left(-38\right)±\sqrt{1444-96\times 15}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-38\right)±\sqrt{1444-1440}}{2\times 24}
Multiply -96 times 15.
x=\frac{-\left(-38\right)±\sqrt{4}}{2\times 24}
Add 1444 to -1440.
x=\frac{-\left(-38\right)±2}{2\times 24}
Take the square root of 4.
x=\frac{38±2}{2\times 24}
The opposite of -38 is 38.
x=\frac{38±2}{48}
Multiply 2 times 24.
x=\frac{40}{48}
Now solve the equation x=\frac{38±2}{48} when ± is plus. Add 38 to 2.
x=\frac{5}{6}
Reduce the fraction \frac{40}{48} to lowest terms by extracting and canceling out 8.
x=\frac{36}{48}
Now solve the equation x=\frac{38±2}{48} when ± is minus. Subtract 2 from 38.
x=\frac{3}{4}
Reduce the fraction \frac{36}{48} to lowest terms by extracting and canceling out 12.
x=\frac{5}{6} x=\frac{3}{4}
The equation is now solved.
24x^{2}-38x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
24x^{2}-38x+15-15=-15
Subtract 15 from both sides of the equation.
24x^{2}-38x=-15
Subtracting 15 from itself leaves 0.
\frac{24x^{2}-38x}{24}=-\frac{15}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{38}{24}\right)x=-\frac{15}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{19}{12}x=-\frac{15}{24}
Reduce the fraction \frac{-38}{24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{19}{12}x=-\frac{5}{8}
Reduce the fraction \frac{-15}{24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{19}{12}x+\left(-\frac{19}{24}\right)^{2}=-\frac{5}{8}+\left(-\frac{19}{24}\right)^{2}
Divide -\frac{19}{12}, the coefficient of the x term, by 2 to get -\frac{19}{24}. Then add the square of -\frac{19}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{12}x+\frac{361}{576}=-\frac{5}{8}+\frac{361}{576}
Square -\frac{19}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{12}x+\frac{361}{576}=\frac{1}{576}
Add -\frac{5}{8} to \frac{361}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{24}\right)^{2}=\frac{1}{576}
Factor x^{2}-\frac{19}{12}x+\frac{361}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{24}\right)^{2}}=\sqrt{\frac{1}{576}}
Take the square root of both sides of the equation.
x-\frac{19}{24}=\frac{1}{24} x-\frac{19}{24}=-\frac{1}{24}
Simplify.
x=\frac{5}{6} x=\frac{3}{4}
Add \frac{19}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}