Factor
\left(4x-3\right)\left(6x+7\right)
Evaluate
\left(4x-3\right)\left(6x+7\right)
Graph
Share
Copied to clipboard
a+b=10 ab=24\left(-21\right)=-504
Factor the expression by grouping. First, the expression needs to be rewritten as 24x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
-1,504 -2,252 -3,168 -4,126 -6,84 -7,72 -8,63 -9,56 -12,42 -14,36 -18,28 -21,24
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -504.
-1+504=503 -2+252=250 -3+168=165 -4+126=122 -6+84=78 -7+72=65 -8+63=55 -9+56=47 -12+42=30 -14+36=22 -18+28=10 -21+24=3
Calculate the sum for each pair.
a=-18 b=28
The solution is the pair that gives sum 10.
\left(24x^{2}-18x\right)+\left(28x-21\right)
Rewrite 24x^{2}+10x-21 as \left(24x^{2}-18x\right)+\left(28x-21\right).
6x\left(4x-3\right)+7\left(4x-3\right)
Factor out 6x in the first and 7 in the second group.
\left(4x-3\right)\left(6x+7\right)
Factor out common term 4x-3 by using distributive property.
24x^{2}+10x-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 24\left(-21\right)}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 24\left(-21\right)}}{2\times 24}
Square 10.
x=\frac{-10±\sqrt{100-96\left(-21\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{-10±\sqrt{100+2016}}{2\times 24}
Multiply -96 times -21.
x=\frac{-10±\sqrt{2116}}{2\times 24}
Add 100 to 2016.
x=\frac{-10±46}{2\times 24}
Take the square root of 2116.
x=\frac{-10±46}{48}
Multiply 2 times 24.
x=\frac{36}{48}
Now solve the equation x=\frac{-10±46}{48} when ± is plus. Add -10 to 46.
x=\frac{3}{4}
Reduce the fraction \frac{36}{48} to lowest terms by extracting and canceling out 12.
x=-\frac{56}{48}
Now solve the equation x=\frac{-10±46}{48} when ± is minus. Subtract 46 from -10.
x=-\frac{7}{6}
Reduce the fraction \frac{-56}{48} to lowest terms by extracting and canceling out 8.
24x^{2}+10x-21=24\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{7}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{4} for x_{1} and -\frac{7}{6} for x_{2}.
24x^{2}+10x-21=24\left(x-\frac{3}{4}\right)\left(x+\frac{7}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}+10x-21=24\times \frac{4x-3}{4}\left(x+\frac{7}{6}\right)
Subtract \frac{3}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+10x-21=24\times \frac{4x-3}{4}\times \frac{6x+7}{6}
Add \frac{7}{6} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+10x-21=24\times \frac{\left(4x-3\right)\left(6x+7\right)}{4\times 6}
Multiply \frac{4x-3}{4} times \frac{6x+7}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
24x^{2}+10x-21=24\times \frac{\left(4x-3\right)\left(6x+7\right)}{24}
Multiply 4 times 6.
24x^{2}+10x-21=\left(4x-3\right)\left(6x+7\right)
Cancel out 24, the greatest common factor in 24 and 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}