Evaluate
\frac{24}{11}\approx 2.181818182
Factor
\frac{2 ^ {3} \cdot 3}{11} = 2\frac{2}{11} = 2.1818181818181817
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)24}\\\end{array}
Use the 1^{st} digit 2 from dividend 24
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)24}\\\end{array}
Since 2 is less than 11, use the next digit 4 from dividend 24 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)24}\\\end{array}
Use the 2^{nd} digit 4 from dividend 24
\begin{array}{l}\phantom{11)}02\phantom{4}\\11\overline{)24}\\\phantom{11)}\underline{\phantom{}22\phantom{}}\\\phantom{11)9}2\\\end{array}
Find closest multiple of 11 to 24. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 24 to get reminder 2. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }2
Since 2 is less than 11, stop the division. The reminder is 2. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}