Solve for t
t=-12
t=8
Share
Copied to clipboard
t+0.25t^{2}=24
Swap sides so that all variable terms are on the left hand side.
t+0.25t^{2}-24=0
Subtract 24 from both sides.
0.25t^{2}+t-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1^{2}-4\times 0.25\left(-24\right)}}{2\times 0.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.25 for a, 1 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±\sqrt{1-4\times 0.25\left(-24\right)}}{2\times 0.25}
Square 1.
t=\frac{-1±\sqrt{1-\left(-24\right)}}{2\times 0.25}
Multiply -4 times 0.25.
t=\frac{-1±\sqrt{1+24}}{2\times 0.25}
Multiply -1 times -24.
t=\frac{-1±\sqrt{25}}{2\times 0.25}
Add 1 to 24.
t=\frac{-1±5}{2\times 0.25}
Take the square root of 25.
t=\frac{-1±5}{0.5}
Multiply 2 times 0.25.
t=\frac{4}{0.5}
Now solve the equation t=\frac{-1±5}{0.5} when ± is plus. Add -1 to 5.
t=8
Divide 4 by 0.5 by multiplying 4 by the reciprocal of 0.5.
t=-\frac{6}{0.5}
Now solve the equation t=\frac{-1±5}{0.5} when ± is minus. Subtract 5 from -1.
t=-12
Divide -6 by 0.5 by multiplying -6 by the reciprocal of 0.5.
t=8 t=-12
The equation is now solved.
t+0.25t^{2}=24
Swap sides so that all variable terms are on the left hand side.
0.25t^{2}+t=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.25t^{2}+t}{0.25}=\frac{24}{0.25}
Multiply both sides by 4.
t^{2}+\frac{1}{0.25}t=\frac{24}{0.25}
Dividing by 0.25 undoes the multiplication by 0.25.
t^{2}+4t=\frac{24}{0.25}
Divide 1 by 0.25 by multiplying 1 by the reciprocal of 0.25.
t^{2}+4t=96
Divide 24 by 0.25 by multiplying 24 by the reciprocal of 0.25.
t^{2}+4t+2^{2}=96+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+4t+4=96+4
Square 2.
t^{2}+4t+4=100
Add 96 to 4.
\left(t+2\right)^{2}=100
Factor t^{2}+4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+2\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
t+2=10 t+2=-10
Simplify.
t=8 t=-12
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}