Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=24
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x+16-24=0
Subtract 24 from both sides.
x^{2}+8x-8=0
Subtract 24 from 16 to get -8.
x=\frac{-8±\sqrt{8^{2}-4\left(-8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-8\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+32}}{2}
Multiply -4 times -8.
x=\frac{-8±\sqrt{96}}{2}
Add 64 to 32.
x=\frac{-8±4\sqrt{6}}{2}
Take the square root of 96.
x=\frac{4\sqrt{6}-8}{2}
Now solve the equation x=\frac{-8±4\sqrt{6}}{2} when ± is plus. Add -8 to 4\sqrt{6}.
x=2\sqrt{6}-4
Divide -8+4\sqrt{6} by 2.
x=\frac{-4\sqrt{6}-8}{2}
Now solve the equation x=\frac{-8±4\sqrt{6}}{2} when ± is minus. Subtract 4\sqrt{6} from -8.
x=-2\sqrt{6}-4
Divide -8-4\sqrt{6} by 2.
x=2\sqrt{6}-4 x=-2\sqrt{6}-4
The equation is now solved.
24=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=24
Swap sides so that all variable terms are on the left hand side.
\left(x+4\right)^{2}=24
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x+4=2\sqrt{6} x+4=-2\sqrt{6}
Simplify.
x=2\sqrt{6}-4 x=-2\sqrt{6}-4
Subtract 4 from both sides of the equation.