Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-z^{2}+5z+24
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=-24=-24
Factor the expression by grouping. First, the expression needs to be rewritten as -z^{2}+az+bz+24. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=8 b=-3
The solution is the pair that gives sum 5.
\left(-z^{2}+8z\right)+\left(-3z+24\right)
Rewrite -z^{2}+5z+24 as \left(-z^{2}+8z\right)+\left(-3z+24\right).
-z\left(z-8\right)-3\left(z-8\right)
Factor out -z in the first and -3 in the second group.
\left(z-8\right)\left(-z-3\right)
Factor out common term z-8 by using distributive property.
-z^{2}+5z+24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 24}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-5±\sqrt{25-4\left(-1\right)\times 24}}{2\left(-1\right)}
Square 5.
z=\frac{-5±\sqrt{25+4\times 24}}{2\left(-1\right)}
Multiply -4 times -1.
z=\frac{-5±\sqrt{25+96}}{2\left(-1\right)}
Multiply 4 times 24.
z=\frac{-5±\sqrt{121}}{2\left(-1\right)}
Add 25 to 96.
z=\frac{-5±11}{2\left(-1\right)}
Take the square root of 121.
z=\frac{-5±11}{-2}
Multiply 2 times -1.
z=\frac{6}{-2}
Now solve the equation z=\frac{-5±11}{-2} when ± is plus. Add -5 to 11.
z=-3
Divide 6 by -2.
z=-\frac{16}{-2}
Now solve the equation z=\frac{-5±11}{-2} when ± is minus. Subtract 11 from -5.
z=8
Divide -16 by -2.
-z^{2}+5z+24=-\left(z-\left(-3\right)\right)\left(z-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and 8 for x_{2}.
-z^{2}+5z+24=-\left(z+3\right)\left(z-8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.