Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(12+x-6x^{2}\right)
Factor out 2.
-6x^{2}+x+12
Consider 12+x-6x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-6\times 12=-72
Factor the expression by grouping. First, the expression needs to be rewritten as -6x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=9 b=-8
The solution is the pair that gives sum 1.
\left(-6x^{2}+9x\right)+\left(-8x+12\right)
Rewrite -6x^{2}+x+12 as \left(-6x^{2}+9x\right)+\left(-8x+12\right).
-3x\left(2x-3\right)-4\left(2x-3\right)
Factor out -3x in the first and -4 in the second group.
\left(2x-3\right)\left(-3x-4\right)
Factor out common term 2x-3 by using distributive property.
2\left(2x-3\right)\left(-3x-4\right)
Rewrite the complete factored expression.
-12x^{2}+2x+24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-12\right)\times 24}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-12\right)\times 24}}{2\left(-12\right)}
Square 2.
x=\frac{-2±\sqrt{4+48\times 24}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-2±\sqrt{4+1152}}{2\left(-12\right)}
Multiply 48 times 24.
x=\frac{-2±\sqrt{1156}}{2\left(-12\right)}
Add 4 to 1152.
x=\frac{-2±34}{2\left(-12\right)}
Take the square root of 1156.
x=\frac{-2±34}{-24}
Multiply 2 times -12.
x=\frac{32}{-24}
Now solve the equation x=\frac{-2±34}{-24} when ± is plus. Add -2 to 34.
x=-\frac{4}{3}
Reduce the fraction \frac{32}{-24} to lowest terms by extracting and canceling out 8.
x=-\frac{36}{-24}
Now solve the equation x=\frac{-2±34}{-24} when ± is minus. Subtract 34 from -2.
x=\frac{3}{2}
Reduce the fraction \frac{-36}{-24} to lowest terms by extracting and canceling out 12.
-12x^{2}+2x+24=-12\left(x-\left(-\frac{4}{3}\right)\right)\left(x-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{3} for x_{1} and \frac{3}{2} for x_{2}.
-12x^{2}+2x+24=-12\left(x+\frac{4}{3}\right)\left(x-\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-12x^{2}+2x+24=-12\times \frac{-3x-4}{-3}\left(x-\frac{3}{2}\right)
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-12x^{2}+2x+24=-12\times \frac{-3x-4}{-3}\times \frac{-2x+3}{-2}
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-12x^{2}+2x+24=-12\times \frac{\left(-3x-4\right)\left(-2x+3\right)}{-3\left(-2\right)}
Multiply \frac{-3x-4}{-3} times \frac{-2x+3}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-12x^{2}+2x+24=-12\times \frac{\left(-3x-4\right)\left(-2x+3\right)}{6}
Multiply -3 times -2.
-12x^{2}+2x+24=-2\left(-3x-4\right)\left(-2x+3\right)
Cancel out 6, the greatest common factor in -12 and 6.