Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.7x^{2}+23x=11
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.7x^{2}+23x-11=11-11
Subtract 11 from both sides of the equation.
0.7x^{2}+23x-11=0
Subtracting 11 from itself leaves 0.
x=\frac{-23±\sqrt{23^{2}-4\times 0.7\left(-11\right)}}{2\times 0.7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.7 for a, 23 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\times 0.7\left(-11\right)}}{2\times 0.7}
Square 23.
x=\frac{-23±\sqrt{529-2.8\left(-11\right)}}{2\times 0.7}
Multiply -4 times 0.7.
x=\frac{-23±\sqrt{529+30.8}}{2\times 0.7}
Multiply -2.8 times -11.
x=\frac{-23±\sqrt{559.8}}{2\times 0.7}
Add 529 to 30.8.
x=\frac{-23±\frac{3\sqrt{1555}}{5}}{2\times 0.7}
Take the square root of 559.8.
x=\frac{-23±\frac{3\sqrt{1555}}{5}}{1.4}
Multiply 2 times 0.7.
x=\frac{\frac{3\sqrt{1555}}{5}-23}{1.4}
Now solve the equation x=\frac{-23±\frac{3\sqrt{1555}}{5}}{1.4} when ± is plus. Add -23 to \frac{3\sqrt{1555}}{5}.
x=\frac{3\sqrt{1555}-115}{7}
Divide -23+\frac{3\sqrt{1555}}{5} by 1.4 by multiplying -23+\frac{3\sqrt{1555}}{5} by the reciprocal of 1.4.
x=\frac{-\frac{3\sqrt{1555}}{5}-23}{1.4}
Now solve the equation x=\frac{-23±\frac{3\sqrt{1555}}{5}}{1.4} when ± is minus. Subtract \frac{3\sqrt{1555}}{5} from -23.
x=\frac{-3\sqrt{1555}-115}{7}
Divide -23-\frac{3\sqrt{1555}}{5} by 1.4 by multiplying -23-\frac{3\sqrt{1555}}{5} by the reciprocal of 1.4.
x=\frac{3\sqrt{1555}-115}{7} x=\frac{-3\sqrt{1555}-115}{7}
The equation is now solved.
0.7x^{2}+23x=11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.7x^{2}+23x}{0.7}=\frac{11}{0.7}
Divide both sides of the equation by 0.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{23}{0.7}x=\frac{11}{0.7}
Dividing by 0.7 undoes the multiplication by 0.7.
x^{2}+\frac{230}{7}x=\frac{11}{0.7}
Divide 23 by 0.7 by multiplying 23 by the reciprocal of 0.7.
x^{2}+\frac{230}{7}x=\frac{110}{7}
Divide 11 by 0.7 by multiplying 11 by the reciprocal of 0.7.
x^{2}+\frac{230}{7}x+\frac{115}{7}^{2}=\frac{110}{7}+\frac{115}{7}^{2}
Divide \frac{230}{7}, the coefficient of the x term, by 2 to get \frac{115}{7}. Then add the square of \frac{115}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{230}{7}x+\frac{13225}{49}=\frac{110}{7}+\frac{13225}{49}
Square \frac{115}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{230}{7}x+\frac{13225}{49}=\frac{13995}{49}
Add \frac{110}{7} to \frac{13225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{115}{7}\right)^{2}=\frac{13995}{49}
Factor x^{2}+\frac{230}{7}x+\frac{13225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{115}{7}\right)^{2}}=\sqrt{\frac{13995}{49}}
Take the square root of both sides of the equation.
x+\frac{115}{7}=\frac{3\sqrt{1555}}{7} x+\frac{115}{7}=-\frac{3\sqrt{1555}}{7}
Simplify.
x=\frac{3\sqrt{1555}-115}{7} x=\frac{-3\sqrt{1555}-115}{7}
Subtract \frac{115}{7} from both sides of the equation.