Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\phantom{\times99999999}0\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 2384 with 0. Write the result 0 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\phantom{\times99999999}0\\\phantom{\times99}21456\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 2384 with 9. Write the result 21456 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\phantom{\times99999999}0\\\phantom{\times99}21456\phantom{9}\\\phantom{\times9}11920\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 2384 with 5. Write the result 11920 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\phantom{\times99999999}0\\\phantom{\times99}21456\phantom{9}\\\phantom{\times9}11920\phantom{99}\\\phantom{\times9}9536\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 2384 with 4. Write the result 9536 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\phantom{\times99999999}0\\\phantom{\times99}21456\phantom{9}\\\phantom{\times9}11920\phantom{99}\\\phantom{\times9}9536\phantom{999}\\\underline{\phantom{\times}7152\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 2384 with 3. Write the result 7152 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}2384\\\underline{\times\phantom{999}34590}\\\phantom{\times99999999}0\\\phantom{\times99}21456\phantom{9}\\\phantom{\times9}11920\phantom{99}\\\phantom{\times9}9536\phantom{999}\\\underline{\phantom{\times}7152\phantom{9999}}\\\phantom{\times}82462560\end{array}
Now add the intermediate results to get final answer.