Evaluate
\frac{794}{685}\approx 1.159124088
Factor
\frac{2 \cdot 397}{5 \cdot 137} = 1\frac{109}{685} = 1.159124087591241
Share
Copied to clipboard
\begin{array}{l}\phantom{2055)}\phantom{1}\\2055\overline{)2382}\\\end{array}
Use the 1^{st} digit 2 from dividend 2382
\begin{array}{l}\phantom{2055)}0\phantom{2}\\2055\overline{)2382}\\\end{array}
Since 2 is less than 2055, use the next digit 3 from dividend 2382 and add 0 to the quotient
\begin{array}{l}\phantom{2055)}0\phantom{3}\\2055\overline{)2382}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2382
\begin{array}{l}\phantom{2055)}00\phantom{4}\\2055\overline{)2382}\\\end{array}
Since 23 is less than 2055, use the next digit 8 from dividend 2382 and add 0 to the quotient
\begin{array}{l}\phantom{2055)}00\phantom{5}\\2055\overline{)2382}\\\end{array}
Use the 3^{rd} digit 8 from dividend 2382
\begin{array}{l}\phantom{2055)}000\phantom{6}\\2055\overline{)2382}\\\end{array}
Since 238 is less than 2055, use the next digit 2 from dividend 2382 and add 0 to the quotient
\begin{array}{l}\phantom{2055)}000\phantom{7}\\2055\overline{)2382}\\\end{array}
Use the 4^{th} digit 2 from dividend 2382
\begin{array}{l}\phantom{2055)}0001\phantom{8}\\2055\overline{)2382}\\\phantom{2055)}\underline{\phantom{}2055\phantom{}}\\\phantom{2055)9}327\\\end{array}
Find closest multiple of 2055 to 2382. We see that 1 \times 2055 = 2055 is the nearest. Now subtract 2055 from 2382 to get reminder 327. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }327
Since 327 is less than 2055, stop the division. The reminder is 327. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}