Evaluate
\frac{1575}{4}=393.75
Factor
\frac{3 ^ {2} \cdot 5 ^ {2} \cdot 7}{2 ^ {2}} = 393\frac{3}{4} = 393.75
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)23625}\\\end{array}
Use the 1^{st} digit 2 from dividend 23625
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)23625}\\\end{array}
Since 2 is less than 60, use the next digit 3 from dividend 23625 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)23625}\\\end{array}
Use the 2^{nd} digit 3 from dividend 23625
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)23625}\\\end{array}
Since 23 is less than 60, use the next digit 6 from dividend 23625 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)23625}\\\end{array}
Use the 3^{rd} digit 6 from dividend 23625
\begin{array}{l}\phantom{60)}003\phantom{6}\\60\overline{)23625}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)9}56\\\end{array}
Find closest multiple of 60 to 236. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 236 to get reminder 56. Add 3 to quotient.
\begin{array}{l}\phantom{60)}003\phantom{7}\\60\overline{)23625}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)9}562\\\end{array}
Use the 4^{th} digit 2 from dividend 23625
\begin{array}{l}\phantom{60)}0039\phantom{8}\\60\overline{)23625}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)9}562\\\phantom{60)}\underline{\phantom{9}540\phantom{9}}\\\phantom{60)99}22\\\end{array}
Find closest multiple of 60 to 562. We see that 9 \times 60 = 540 is the nearest. Now subtract 540 from 562 to get reminder 22. Add 9 to quotient.
\begin{array}{l}\phantom{60)}0039\phantom{9}\\60\overline{)23625}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)9}562\\\phantom{60)}\underline{\phantom{9}540\phantom{9}}\\\phantom{60)99}225\\\end{array}
Use the 5^{th} digit 5 from dividend 23625
\begin{array}{l}\phantom{60)}00393\phantom{10}\\60\overline{)23625}\\\phantom{60)}\underline{\phantom{}180\phantom{99}}\\\phantom{60)9}562\\\phantom{60)}\underline{\phantom{9}540\phantom{9}}\\\phantom{60)99}225\\\phantom{60)}\underline{\phantom{99}180\phantom{}}\\\phantom{60)999}45\\\end{array}
Find closest multiple of 60 to 225. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 225 to get reminder 45. Add 3 to quotient.
\text{Quotient: }393 \text{Reminder: }45
Since 45 is less than 60, stop the division. The reminder is 45. The topmost line 00393 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 393.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}